
DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-1 BRAWLER

DRAFT

2.15 SITUATION UPDATE

The purpose of the Situation Update Functional Element (FE) is to update the pilot’s
knowledge of the current tactical situation. The update process consists of placing
information about the pilot’s own aircraft and other observed entities (aircraft and missiles)
into the pilot’s situation awareness, or “mental model”, and then evaluating relationships
between the pilot and observed entities. The situation update can be broken down into two
parts, making observations and processing those observations into the pilot’s mental model.

Pilot knowledge of his own aircraft comes from observations of his cockpit instruments,
HUD, and through direct observation through the cockpit canopy.  Knowledge of other
entities comes to the pilot from his sensors, by direct visual observation, from radio
messages from friendly aircraft, or from inferred detections.

Sensors available to the pilot include: visual (eyes), radar warning receiver (RWR), identify
friend-or-foe (IFF), infrared search and track (IRST), radar, missile approach warning radar
(MAW) and missile launch warning (MW) devices. The pilot can only gain information
from a sensor if he actually looks at the display for that particular sensor. For example, if
the pilot spends his available search time looking out the canopy, he will not have time to
look at the radar screen and pick up any target information displayed there. A part of the
pilot’s duty cycle includes time allotted to make new observations.  During this time, the
pilot will attempt to look at the sensors that have the highest priority at that time. Sensor
search priorities are based on intrinsic sensor value, perception of what information is being
displayed on that sensor, and the time since that sensor was last observed. Sensors will be
searched by the pilot starting with the highest priority sensor and continuing down the
sensor priority list until either all sensors have been searched or the search time has expired.

Pilots may also receive radio messages from friendly sources. This may include
information on hostile detections, missiles fired by the friendly, missiles detected, or
command and control information from GCI or AWACS controllers. 

In addition to the above, a pilot’s situation awareness may be changed through one more
mechanism, referred to as inferred detection. An example of an inferred detection would be
a situation where a pilot observes a wing man destroyed by a missile, but he has not
previously observed any hostiles.  In such a case, he will infer the presence of hostile
aircraft.

Once the observations of other aircraft and missiles have been made, then  the information
must be assimilated into the pilot’s mental model. Determinations will be made whether the
detected aircraft or missiles are new or were previously detected, if the detected aircraft is
hostile, friendly, or unknown, if an aircraft has been killed, or what has happened to known
aircraft that were not observed in this period. Other information such as intent to fire
messages from other friendlies and orders from the flight leader are also folded into the
pilot’s mental model.

The situation assessment process begins with the incorporation of new observations into
the mental model of a pilot.  The object of this initial phase is to determine a physical state
(e.g., position, velocity) of each aircraft and missile, consistent with both the new
observations and with the previous assessment of the situation.  This process is called
tracking.  The input to the tracking model consists of successive observations of each target.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-2 Update:  12/31/97

DRAFT

The output of the tracker (at a particular time) is the estimated state vector of each target
considered and an estimate of the errors associated with the state vector.

2.15.1 Functional Element Design Requirements

This section presents requirements necessary to implement the Situation Update FE.  This
function will simulate changes to the situational awareness of a pilot via a process of
making observations,  interpreting their significance, and storing information in arrays that
can be accessed during the decision making process.  The function will be executed
repeatedly for each pilot in the simulation so that a model of current situation awareness
can be maintained over the course of simulation execution.

a. Brawler will simulate pilot observations of his own aircraft.  These will include
both performance and physical state parameters, which will be used to update
portions of a data model of the pilot’s current perception of the situation.

b. Brawler will simulate pilot observations of other aircraft and weapon system
platforms.  These will include information on position, status, and perceived
hostility of those platforms, which will be used to update portions of a data
model of the pilot’s current perception of the situation.

c. Brawler will simulate visual observations of cockpit gauges, indicators, and
sensor displays as well as visual observations of objects and weather outside the
cockpit.  These observation scans may be ordered according to priorities
established during previous observation periods that result in perceived
importance of certain sensors or visual sectors.

d. Brawler will simulate receipt of communications via radio and sensors that
display information derived via communications with other sensors.

e. Brawler will process observations to determine their status and correlation with
previous observations and will assign factors that may affect subsequent
observations and/or influence pilot decisions to act.

These requirements will be satisfied by the combined implementation of the design
elements described in the following section.  They were inferred from knowledge of how
the existing models currently perform the Situation Update function.

2.15.2 Functional Element Design Approach

This section contains a description of the design approach used to implement the design
requirements outlined in the previous section. 

The pilot model situation update can be separated into two parts, updating the pilot’s
knowledge of his own aircraft and updating the pilot’s knowledge of other entities.  In the
real world, information about his own aircraft is always available to the pilot via cockpit
instrumentation and his HUD.  The approach taken to simulating pilot awareness of this
information is to perform a straightforward transfer of aircraft status information from the
physical system model of the aircraft to the pilot’s mental model.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-3 BRAWLER

DRAFT

Observation of other platforms can occur through radio messages received, inferred
detections and sensor observations, counting direct visual observation as a kind of sensor
observation. Only those entities that are observed by the pilot in these ways are allowed into
the mental model.  An exception is made to this during the first consciousness event, where
knowledge of unseen entities may be allowed into the mental model as a simulated
observation history, e.g., flight mates may be visually observed even if not currently visible
to the pilot due to visual obstruction by the pilot’s airframe, since the pilot can be
reasonably assumed to know who is in the flight and where they are when the simulated
engagement begins.

When making sensor observations, the pilot must first determine which sensors to look at.
The sensors are ranked in order of priority. Each sensor is given an intrinsic value, based
on the relative usefulness of the information it nominally provides. This value is then
adjusted to reflect the time elapsed since the sensor was last observed. Each sensor’s value
is further adjusted based on aircraft and missiles that the pilot believes to be in the field of
view of that sensor. Once the sensors have been ranked, the pilot searches the highest
ranking sensors as long as time permits. The observations from these sensors are used to
update the pilot’s situation awareness.

To keep this description manageable, analogous functions will be noted and not described
in full detail. For example, the code that adjusts a sensor’s priority based on a perception
that missiles are in the field of view of the sensor is very similar to the code that adjusts a
sensor’s priority based on a perception that aircraft are in the field of view, so this design
will only fully address adjustments due to aircraft. Similarly, sensor priority adjustments
due to aircraft have similar code for each type of sensor display and this discussion will be
limited to observation of the radar display.

Once observations have been made, they must be correlated with the information already
present in the pilot’s mental model. A correlation must be made between each observed
aircraft and the aircraft already known to the pilot to determine if this is a new or previously
detected aircraft. If it is a new aircraft, it is added to the pilot’s mental model. If the aircraft
had been previously detected, its track in the pilot’s mind is updated if the aircraft is
perceived to still be alive.  If it is observed to be dead, then it is added to a list of known
dead aircraft and is otherwise removed from the pilot’s mental model. The next
determination is whether the observed aircraft is friendly, hostile or unknown. Finally, a
projection is made for aircraft that are known to exist but were not observed in this
consciousness event.  Processing missile observations is similar to processing aircraft
observations, radio observations, and inferred detections. 

The pilot model situation update is performed by the procedure shown in Figure 2.15-1.
Each numbered entry is a design element.  A description of each design element is given in
the paragraphs that make up the remainder of this section.  Italic text denotes elements that
are not directly related to the observation of aircraft on the radar scope and will be left for
future documentation.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-4 Update:  12/31/97

DRAFT

Update knowledge of ownship   (1.0)

Update ownship performance parameters   (1.1)

Update ownship physical state   (1.2)

Update knowledge of other platforms   (2.0)

Make observations of other platforms   (2.1)

Sensor observations   (2.1.1)

Determine which sensors to look at first   (2.1.1.1)

Assign intrinsic priority values to each sector   (2.1.1.1.1)

Adjust priority for aircraft perceived being in that sector (2.1.1.1.2)

Radar sector (2.1.1.1.2.1)

Visual sector

RWR sector

IFF sector

IRST sector

Integrated display sector

Adjust priority based on missiles perceived being in that sector

MAW sector

RWR sector

MW sector

IRST sector

Integrated display sector

Radar sector

Visual sector

Search the highest valued sectors while time permits   (2.1.1.2)

  Radar search sector   (2.1.1.2.1)

Observe radar scope   (2.1.1.2.1.1)

Visual search sector

IRST search sector

IFF search sector

MW search sector

MAW search sector

RWR search sector

Integrated display search sector

Make observations (2.1.1.3)

Radar observations   (2.1.1.3.1)

Visual observations

IRST observations

IFF observations

MW observations

MAW observations

FIGURE 2.15-1.  Situation Update Procedure (Page 1 of 2).



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-5 BRAWLER

DRAFT

RWR observations

Integrated display observations

Radio messages received

Inferred detections

Process observations of other platforms   (2.2)

Process aircraft observations   (2.2.1)

Determine if  aircraft is new or previously detected   (2.2.1.1)

Incorporate observations of previously undetected aircraft  (2.2.1.2)

Incorporate observations of previously detected aircraft (2.2.1.3)

Determine if  aircraft is friendly, hostile or unknown   (2.2.1.4)

Estimate known aircraft that were not observed this cycle (2.2.1.5)

Process missile observations 

Determine if  missile is new or previously detected 

Incorporate observations of previously undetected missiles

Incorporate observations of previously detected missiles

Determine the  missile’s owner if possible

Determine the  missile’s target if possible 

Estimate known missiles that were not observed this cycle

If missiles were observed, rethink pilot posture

Process radio observations

Detected aircraft messages

Detected missiles messages

Intent to fire messages 

FIGURE 2.15-1.  Situation Update Procedure (Page 2 of 2).

Design Element 15-1:  Update Knowledge of Ownship

Pilot knowledge of his own aircraft is updated in two parts, which are detailed below.  The
first part, implemented under subroutine perfrm,  updates the pilot’s knowledge of his
aircraft’s current performance capabilities, and the second part, implemented under
subroutine ccself, updates his knowledge of his aircraft’s current physical state.

Design Element 15-2:  Update Ownship Performance Parameters

Under this design element, subroutine perfrm updates the pilot’s knowledge of his aircraft’s
current performance capabilities.  This is done by updating the values of a number of
factors that describe the aircraft’s performance capabilities. These include:

maximum sustained Gs
corner velocity
drag versus lift tables
angle of attack versus lift tables
maximum turn rate
drag at maximum sustained Gs
effective gross thrust
effective propulsive drag



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-6 Update:  12/31/97

DRAFT

current drag on aircraft
minimum longitudinal acceleration
maximum longitudinal acceleration
minimum allowable angle of attack
maximum allowable angle of attack
drag versus angle of attack tables
longitudinal force versus throttle setting

The computation of all variables except for maximum sustained Gs and corner velocity is
straightforward and is based upon the current ground truth state of the aircraft. The
maximum sustained Gs is intended not as the true maximum sustained G capability, but
rather as the maximum Gs that the pilot will use in any situation except extreme emergency.
It is sensitive to a number of non-aerodynamic factors, including interest in firing a weapon
and range to the nearest hostile or hostile missile.

Design Element 15-3:  Update Ownship Physical State

Under this element, subroutine ccself updates the pilot’s knowledge of this aircraft’s
physical state. Some of the ownship status information transferred to the pilot’s mind
includes: inertial position, velocity, and acceleration, mach number, angle of attack, speed,
aircraft mass and dynamic pressure.  Ground truth information is used as the source of this
information.

Design Element 15-4:  Update Knowledge of Other Platforms

Pilot knowledge of other entities is updated in two steps.  The first step determines what
observations the pilot will make and what information is contained in those observations.
The second step incorporates the observations into the pilot’s situation awareness.
Subroutine conevt acts as the executive routine for updating the conscious pilot’s
knowledge of other platforms.  The two primary subroutines called from conevt to update
the conscious pilot’s knowledge of other platforms are sensor, which is the executive
routine for making sensor observations and mindup, which is the executive routine for
processing observations of other platforms into the conscious pilot’s mental model.

Design Element 15-5:  Make Observations of Other Platforms

Observations can be constructed from received radio messages, visual observation of
sensor displays, or from inferred detections.  Sensor observations, including direct visual
observations, are handled by subroutine sensor. The functions related to sensor
observations are detailed below.

The observations made of each target are generated by the sensor models of visual, radar,
communicated, and avionics display observations.  The form of an observation differs for
different types of sensors and sensor modes.  For example, when a pilot makes a visual
sighting, he observes range, azimuth, elevation, and, with lower accuracy, aspect angle,
azimuth rate, and elevation rate.  For a radar in scan mode, range, azimuth, elevation, and
range rate are observed, but not aspect angle.

There is also a cross correlation matrix associated with observations.  It represents the
distribution of errors in the measurement with respect to the true target state.  At present the



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-7 BRAWLER

DRAFT

sigmas of the observables are squared and inserted into the corresponding diagonal
elements of the observation cross correlation matrix.

Design Element 15-6:  Sensor Observations

In order to make observations, a pilot must visually observe an area of the sky or an
avionics display.  In Brawler, these different sources of visual observations are called
search sectors.  There are eight sky sectors and one sector for each sensor display.  If the
aircraft is equipped with a sensor fusion device, then all of the separate avionics displays
are replaced with a single integrated display (IND).  The observation process is modeled by
computing the relative values of each available search sector, and then observing each one,
from most important to least, until the time available for making observations has been used
up.  Subroutine sensor is the executive routine for conducting sensor searches.

The design elements that follow trace through the sensor observation process along the path
for the radar search sector. The other search sectors (visual, IFF, IRST, etc.) have analogous
processing paths and will not be discussed in detail. Similarly, observations of aircraft and
missiles are handled in similar ways, so detailed description is given in this report only for
aircraft observations.

An avionics display is also a generator of observations.  It is assumed that the track bank
of the device is displayed somewhere on the instrument panel.  This display can include
some or all of the variables in the track bank.  The pilot perceives the observation with
errors that depend on the resolution of the display output.  In this way it is possible to model
the independent device behavior and the pilot's perception of the device output separately.

Design Element 15-7:  Determine Which Sensors to Look at First

The search sectors are ranked so that the pilot can choose which sensors to look at first.
Each search sector is scored on three factors, intrinsic value, time since last observed and
whether or not the pilot believes that sensor will contain any aircraft or missile information.
The highest scoring search sectors will be looked at first during the pilot’s available search
time.

Design Element 15-8:  Assign Intrinsic Priority Values to Each Sector

Sector search values are initialized with user input parameters for each sector that indicate
their relative importance.  These values are then adjusted to reflect the time elapsed since
the search of each sector. There are currently 18 search sectors, listed as follows:

1-8) visual search sectors, each 1/8th of a sphere centered at the pilot

9) radar 

10) infrared search and track (IRST)

11) identify friend or foe (IFF)

12) missile warning (MW)

13) radar warning receiver (RWR)

14) missile approach warning (MAW)

15) integrated display (IND, i.e. sensor fusion device (SFD))



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-8 Update:  12/31/97

DRAFT

16) reserved for proprietary use

17) reserved for proprietary use

18) reserved for proprietary use

Avionics sectors are skipped if the aircraft does not carry an avionics device of that type.

The adjustment factor for time since the sector was last searched is:

1 - Cauchy(Tnow - Tsch, agesec)

where Tnow is the current simulation time, Tsch is the time of the last search of this sector,
and agesec is an input data element specifying the desired revisit interval for this sector.
agesec is used to set the width of the Cauchy function.  For visual sectors, a random value
ranging from 0 to .001 is also added to break ties between visual sector scores.

Design Element 15-9:  Adjust Priority Based on Aircraft Perceived to be in 
That Sector

Search sector priorities are adjusted by counting and identifying aircraft already known to
the pilot that might appear in each observation sector and then increasing the score of the
sector search values accordingly.  The purpose of this is to simulate the fact that a pilot will
tend to revisit a sensor display or sector of the sky more frequently if he already knows that
it contains a lot of potentially important information (i.e., is displaying a lot of tracks).  The
algorithm used in this design element is to loop through the list of aircraft known to the
pilot, and for each one to determine all search sectors that might contain the aircraft. This
determination is based upon observer target geometry and FOR coverage of each sensor.
The target aircraft is added to a list of potential targets for each sector in which it might be
observed and the sector search value for that sector is updated. Note that there is only one
IFF sector, even if the aircraft is carrying multiple IFF devices.  The IFF sector value will
be that of only the most valuable IFF device.

Design Element 15-10:  Radar Sector - Adjustment due to Aircraft

This design element, implemented by subroutine rdrval, calculates the incremental value
to be added to the radar sector search value as a result of aircraft being in the radar sector
(observable by the radar). Different weights are attached to the value depending on whether
the target is believed to be a friend or foe, whether the target is the primary target or if the
radar is trying to lock on to the target in Single Target Track (STT) mode. The incremental
search value is added to the current sector search value.

Design Element 15-11:  Search the Highest Valued Sectors While Time 
Permits

Once the sector values have been assigned, the sectors are searched in order, from highest
to lowest priority using an iterative algorithm.  During each pass through the loop, the
highest valued sector is determined, then the appropriate search algorithm for that sector is
executed to determine if any observations are made and how much time was spent
searching the sector. The sector search value for this sector is then set to zero so that on the
next pass through the next highest scoring sector will be processed. This continues until the
search time is exhausted, or until there are no sectors remaining to be searched.  



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-9 BRAWLER

DRAFT

It should be noted that the value of searching a sector depends upon what entities the pilot
believes to be in that sector, but the observations made are based upon the actual contents
of an avionics display or, for visual observations, the positions and orientations of the
actual aircraft and missiles.

Design Element 15-12:  Radar Sector Search

Observation of the radar display is broken into two parts, discussed below.  The first part,
observing the radar scope, examines the current status of the radar model to determine what
is displayed on the radar scope.  The second part, making the observations, takes this
information and translates it into zero or more observations.

Design Element 15-13:  Observe Radar Scope

The purpose of this design element is to construct a list of the aircraft and missiles that the
pilot observes when he looks at his radar scope. Each radar track is tested to see if it will be
observed and, if so, is added to a list of entities that will be observed. A track will not be
observed if:

f. It has not been updated since the radar scope was last looked at.

g. It is beyond the radar scope range limit.

h. It has faded from the scope, due to maximum display time limits.  A radar in
scan or STT mode will display each hit on a target for a finite amount of time,
then it fades out.  The amount of time is an input data item.

i. It is a TWS track, but it is not established.  A radar in TWS mode must make m
detections of a target in every n frames (detection opportunities) in order to
mark a track as “established.”  Established tracks are displayed to the pilot and
are available for use by the fire control device.  The values of m and n are input
data items.

Design Element 15-14:  Make Observations

As each sector is searched by the pilot, a list of observed entities is constructed. Each is
translated into an observation, whose set of observed variables is a function of the type of
observation made.  For example, some sensors may only observe target azimuth and
elevation, others may observe additional variables such as range,  range rate, or the
wavelength of an RF emission.  

Design Element 15-15:  Radar Sector Observation List

At this point, each entry on the list of observed entities is translated into an observation.
The set of observables associated with each observation is a function of radar mode,
submode, and whether or not the detection has been jammed.  If the radar is in TWS or STT
mode, the observables are target position and velocity in earth centered Cartesian
coordinates.  If the radar is in scan mode, then the observables will be azimuth and elevation
if the detection is being jammed, but not strongly enough to completely mask the target.
The observables will be azimuth, elevation, and rage rate if the waveform used does not
allow range measurement (specified in input data) or if the radar is in high PRF and in the



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-10 Update:  12/31/97

DRAFT

velocity search submode.  In all other cases, the observables will be range, azimuth,
elevation, and range rate.  The observables will not be perfect “ground truth” values, but
will reflect the errors and uncertainties of the radar track or detection from which they are
derived.

For each observed entity, the observables are computed and recorded, along with detection
method and any aircraft typing information.  The detection method is either a clear radar
detection or a jammed detection. In most cases, radar detections do not carry with them any
typing, or ID, information about their targets.  However, there is an operating mode switch
that will allow typing of detected targets that are trying to jam the radar.

Design Element 15-16:  Process Observations of Other Platforms

The second major part of the situation update involves processing the observations into the
pilot’s mental model. Subroutine mindup is an executive routine for processing entity
observations. Information obtained through radio messages is processed first.
Communicated sightings of other aircraft and missiles are added to the pilot’s mental model
first. Next, intent to shoot messages are processed, which may cause the pilot to change
targets if the target he has selected is already being attacked by another friendly. Sensor
observations are processed next. If an observation is determined to be a new aircraft
sighting, it is added to the pilot’s mental model. Otherwise the existing mental model track
of the observed aircraft is updated to include the new observation information.

As part of this update, assessments are made to attempt to determine aircraft side
(hostile/friendly/unknown) and missile ownership and target. If the pilot’s situation has
changed considerably due to the new information contained in his latest observations, he
must make new decisions relating to the flight posture or flight tactics that he will employ.
Factors that may require the pilot rethink how to address his new situation include the
observation of a new aircraft or missile, the identification of a previously unknown aircraft
to now be hostile or friendly, and the receipt of a change in his orders. Finally, outgoing
messages are prepared to be sent to flight mates. These messages contain information from
the latest observations and responses to any previously requested data.

Design Element 15-17:  Process Aircraft Observations

Observation information for each detected aircraft is compared to the pilot’s knowledge of
each aircraft already known to him to determine if the target is a new aircraft or a previously
known aircraft. A new aircraft’s relationship to the conscious pilot is assessed, if possible,
based upon the observables of the observation. If the detected aircraft is already known to
the pilot, the relationship between himself and the observed aircraft is updated if the latest
observation contains new information about aircraft type, side, or alive/dead state. The
establishment and update of aircraft relationships are covered in the remaining design
elements.

Design Element 15-18:  Determine if Aircraft is new or Previously Detected

After an attempt is made to determine if the detected aircraft is already known to the pilot,
a decision must be made whether to accept or discard the observation. If the observation is
accepted and a correlation exists between the observed aircraft and one of the aircraft
known to the pilot, the match is noted and the observation information is merged with the



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-11 BRAWLER

DRAFT

aircraft’s track in the pilot’s mind. If no correlation exists, the aircraft is marked as new and
a track is initialized for it in the pilot’s mind.

An observation may be discarded if another observation made in the same consciousness
event provides better information or if the observation contains no new information. A
detection is discarded for the following cases: 1) discard an electronic countermeasure
(ECM) or IRST detection if it is accompanied by a visual observation, 2) discard an IRST
detection if it is accompanied by a radar observation and, 3) discard an ECM message
detection if the detected aircraft is already known to the pilot. An ECM message detection
occurs when a message sender is informing a message receiver about a target for which he
has only ECM information.

Design Element 15-19:  Incorporate Observations of Previously Unknown 
Aircraft 

If an aircraft is detected for the first time, but is already dead, then the observation is
discarded and the aircraft is ignored.  Otherwise, newly observed aircraft need to be
initialized in the pilot’s mental model.  First, a “track” recording the state vector (position,
velocity, acceleration, orientation) of the aircraft is initialized. The new aircraft’s state
vector is initialized in the pilot’s mental model using either perfect or imperfect
information, depending upon the operating mode specified by the analyst. When using
perfect information, the new aircraft’s state vector is taken from ground truth, projected to
the current simulation time. For imperfect information, a track is initialized with nominal
values, then updated using the observables contained in the observation.  The update is
done via a Kalman filter. In addition to creating the track, an attempt is made to determine
the pilot’s relationship to the new aircraft. The relationship includes hostile/friendly status
and, if friendly, whether the aircraft is a flight or element mate.  Finally, if the observation
contains typing information, this is also transferred into the pilot’s mental model.

Design Element 15-20:  Incorporate Observations of Previously Known 
Aircraft

The process for updating the pilot’s perception of a known aircraft with a new observation
is similar to that for an initial detection, except that an existing track is updated instead of
creating a new track.  Relationship and typing information are also reassessed if the new
observation contains additional information.

Typing and relationship information will only improve as a result of new observations, they
will never be degraded based upon new information.  Brawler does not play imperfect
correlation or incorrect typing, so pilots will either make correct assessments or none at all.
They will never misidentify other aircraft.  

When a pilot has determined that a previously known aircraft has been killed, that aircraft
is added to a list of aircraft known to be dead and is otherwise removed from his mental
model. The pilot may determine the aircraft was killed either by visual observation, through
a received radio message.  He may also assume that a flightmate is dead if no radio
responses have been received from the flightmate in a sufficiently long time (between ten
and thirty seconds from the last query to that aircraft, depending upon how much radio
jamming is present), or if he is able to continue to track it for more than five seconds after
it is killed.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-12 Update:  12/31/97

DRAFT

Design Element 15-21:  Determine if Aircraft is Friendly, Hostile or Unknown

After all of the new observations have been processed, the pilot will attempt to infer the
types of any aircraft whose types are unknown to him.  Inferred identification is based upon
association with other aircraft whose types are known.  Each other aircraft in the
unknown’s flight is checked, and if the pilot knows the type of the other aircraft and if the
unknown is flying in formation with that other aircraft, the pilot is allowed to infer the type
of the unknown.  Flying in formation is defined in terms of a formation factor:

frmfac = dx/rnglim + dv/vlim

where dx is the separation, dv is the magnitude of the difference in velocities, rnglim is one
nautical mile, and vlim is 25 feet/sec.

If the formation factor is less than or equal to 2.0, the two aircraft are considered to be in
formation.

Design Element 15-22:  Estimate Known Aircraft That Were not Observed this 
Cycle

Pilots must account for aircraft that are known, but were not observed during this
consciousness event. Brawler uses several algorithms to update pilot perception of the state
vector of another aircraft in this situation, depending upon geometry and user specified
model options.  These are:  perform a perfect information update, extrapolate the target
position using a Kalman filter, perform a constant velocity projection, employ the pseudo-
observation technique, or assume the aircraft is dead and remove it from the pilot’s mental
model.  If the model is running in the perfect information mode, then ground truth
information is used to update the pilot’s knowledge of the target.

The pseudo-observation technique updates the track of the unobserved aircraft by creating
data that will be used to update the track just like any other observation, but with large
uncertainties associated with it. The reason for doing this is that in real life, an experienced
pilot can often guess the actions of another pilot he cannot observe. By allowing very
limited, error rich access to the actual location of unseen targets, this guessing process is
modeled well enough to suit most engagement scenarios. This methodology has in mind a
within visual range blowby, with the pilot guessing which way his opponent will break.
Pseudo-observation updates are only performed if the target is within 5 nmi of the pilot and
if the pilot’s knowledge of the position of the target is sufficiently accurate.  Sufficiently
accurate is defined as having an uncertainty in direction corresponding to 10 degrees or less
at a distance of 5 nmi.  Pseudo-observations can also be turned off by the user by setting an
operating mode switch in the SCNRIO file.

If enough time has elapsed since the aircraft’s last observation (currently 300 seconds) the
unobserved aircraft is assumed to be dead or to have left the engagement, so it is removed
from the pilot’s mental model.  If pseudo-observations are not used, and the aircraft is not
removed from the mental model, then the aircraft is projected forward using one of two
algorithms, depending upon the importance of the aircraft to the pilot.  If the aircraft is one
of the aircraft that the pilot is actively considering when making decisions (a member of the
so-called “detailed consideration group”), then a Kalman filter update is performed, with
exponentially decreasing acceleration (time constant of 5 seconds) and vertical velocity



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-13 BRAWLER

DRAFT

(time constant of 20 seconds) based upon the time since the last observation.  If the aircraft
is not in the detailed consideration group, its perceived acceleration is set to zero and a
constant velocity projection is made.  If this takes the target to an altitude below 1000 feet,
then the altitude is set to 1000 feet.

In addition to updating the pilot’s perception of the location and velocity of unobserved
aircraft, the pilot may also lose confidence in his identification of an unobserved aircraft.
This will happen if an aircraft whose type is known is close enough to another aircraft that
is either unknown or on the opposite side, and the pilot fails to observe both of them for a
long enough period so that he can no longer tell which is which without new identifying
information.  A range limit is computed based upon the time since the aircraft was last
observed.  The range limit is zero until 20 seconds have elapsed, then increases linearly to
a maximum of 4 nmi at 40 seconds.  If any unknowns or aircraft on the opposite side are
within this limit of the unobserved aircraft, then the pilot loses confidence in its ID and
typing information is lost.

Tracking

Once it has been determined that an observation is of a particular target, the new
information must be merged with previous information about that target which has been
derived from previous observations.  This process is the heart of the tracker, which uses a
modified Kalman filter.  The filter folds observations into the current opinion of the state
for each target and derives a new opinion of the target's state.  The algorithm is detailed in
Appendix I of the Brawler Analyst Manual.

Correlate

Part of the tracking process is the determination of whether an observed target corresponds
to one already in the pilot's mental model.  The Brawler model of this process is currently
rather limited.  For visual, communicated, and avionics display observations, perfect
correlation of a known target with a new observation of that target is assumed.  The model
is a bit more sophisticated for the radar case, in that confusion can take place regarding
targets in the same radar resolution cell or within the coverage of an ECM strobe.

Update

When an avionics device with an internal track bank makes an observation, the filtering
process is performed on the basis of a best fit to a constant velocity target model.  For all
other cases the  observation process uses a constant acceleration model.

A mode is available in Brawler, historically called “perfect information mode” (although
“perfect tracking” is a more appropriate term), in which the entire tracking process
described above is short circuited, except for the case when observations are made under
ECM conditions.  When this short circuiting occurs, pilots are given exact knowledge of
each known target's state.  It is important to note that this applies only to known aircraft and
missiles; initial detections must still take place by legitimate means.  The perfect tracking
mode is intended as a debugging mode, since its use allows one to criticize pilot decisions
without worrying about whether they are being influenced by their limited ability to
correctly assess the position and velocity of other targets.  A partial exception is made in
the case of some avionics devices, since, if they are active, one presumably wants to
observe their confusing effects.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-14 Update:  12/31/97

DRAFT

2.15.3 Functional Element Software Design

This section contains the software design necessary to implement the functional element
requirements and the design approach defined in the preceding sections.  The first
subsection describes the subroutine hierarchy and describes how the subroutines work to
make up the situation update.  The remaining subsections contain functional flow diagrams
for the main subroutines and describe all important operations represented by each block in
the diagrams.

Situation Update Subroutine Hierarchy and Description

The major routines comprising the situation update algorithm and their purpose are given
below with the indentation of the routine name used to indicate the level of the routine
within the calling tree.

conevt- pilot consciousness event executive

perfrm  - computes performance variables for the pilot’s aircraft

sensor - executive routine for conducting sensor searches 

setsvl - initializes sector search priority

acnear - modifies sector search priority if aircraft are perceived by the pilot to
be in that sector

sctsch - makes sector search decisions and conducts sector searches

mindup - executive routine for updating the mental model of the conscious pilot 

ccself - updates pilot knowledge of his aircraft’s physical state

cc2x0 - merges aircraft detections with the existing information about aircraft in
the pilot’s mental model

cc2x1 - correlates observations with targets in the mental model

mremac - deletes aircraft from the current mental model

cc2x2 - updates perception of already known aircraft with new
observations

cc2x3- adds newly detected aircraft to the mental model

cc2x4- updates mental model tracks of aircraft that are already known, but
that were not observed this time

A number of secondary and utility subroutines are also used in the situation update process.
These are listed below.  This list contains a large number of routines that are outside the
scope of this FE, but are included here as an aid in reading and understanding the functional
flow diagrams and the code.

add_2_sensed Makes consistency checks and adds observations to the /sensed/ 
common blocks.

asklev Requests decisions to be made at different levels based on input.

asown Assesses missile ownership, if possible.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-15 BRAWLER

DRAFT

asstgt Gets target assigned to pilot by flight leader.

astgt Assesses missile target and threat to self.

astyp Assesses the type of the observed aircraft based on knowledge of type 
of other members in its flight.

bstsec Determines which sector has the highest priority and should be 
searched next.

cc2_gcirng Checks for range data from GCI.

ffsrch Makes an observation of a particular IFF device.

flyac Updates the state vector for the current aircraft.

fncom Sends messages prepared for flight mates.

fncomi Initializes message sending.

gcetim Determines the time interval to the next self called consciousness event.

getsec Calculates which sectors the aircraft under consideration resides in.

grdrc Gets radar characteristics data for the conscious pilot’s aircraft.

grdrs Gets radar status data for the conscious pilot’s aircraft.

iffsch Performs search of the IFF sector and determines if any detections are 
made.

iffval Calculates the incremental value to be added to the IFF sector search 
value as a result of aircraft being in the IFF sector.

incsec Updates the array containing the number of aircraft/missiles in the 
visual sector.

indobs Constructs observations based upon the contents of the integrated 
trackbank of the sensor fusion device.

indsch Performs search of the integrated display sector and determines if any 
detections are made.

indval Calculates the incremental value to be added to the integrated display 
sector search value as a result of aircraft/missiles being in the integrated 
display sector.

inferl Makes inferred observations.

inicmm Sets up radio message receipt for the conscious pilot.

irsobs Performs the actual sector search for the IRST sector.

irssch Performs search of the IRST sector and determines if any detections are 
made.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-16 Update:  12/31/97

DRAFT

irsval Calculates the incremental value to be added to the IRST sector search 
value as a result of aircraft being in the IRST sector.

irsvlm Calculates the incremental value to be added to the IRST sector search 
value as a result of missiles being in the IRST sector.

kalmni Propagates an aircraft track using a Kalman filter.

m3perf Places perfect information on the tracking arrays if the perfect 
information flag is set.

majud       Does a complete situation assessment update.

makece Plants the next consciousness event for the pilot into the event list.

mawobs Uses the contents of the MAW device trackbank to construct missile 
observations.

mawsch Performs search of the MAW sector and determines if any detections 
are made.

mawval Calculates the incremental value to be added to the MAW sector search 
value as a result of missiles being in the MAW sector.

mindin Retrieves internal memory for the current pilot’s aircraft.

minud  Performs a partial situation assessment.

mmordr Reorganizes a pilot’s mental model if necessary.

modsel Selects an action based on the updated mental model.

msl2x0 Merges missile detections with the existing information about missiles 
in the pilot’s mental model.

msl2x1 Correlates detections with already known missiles.

msl2x2 Tracks and updates known missiles in the presence of new observations 
of those missiles.

msl2x3 Initializes new missiles from their observations.

msl2x4 Takes care of known missiles unobserved in this consciousness event.

msl2x5 Checks for active radar missiles that have acquired their target.

msl2mm Adds new missiles to mental model and increments the number of 
observed missiles.

mslner Adjusts the sector search priority values if missiles are perceived to be 
present in that sector.

mslsec Calculates which sectors the missile under consideration resides in.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-17 BRAWLER

DRAFT

mslpob Makes aircraft track projections using the pseudo observation 
technique.

msvpob Makes aircraft track projections using the pseudo observation 
technique.

mwmsl Allows the pilot to observe each missile in the MW track bank.

mwsch Performs search of the MW sector and determines if any detections are 
made.

mwval Calculates the incremental value to be added to the MW sector search 
value as a result of missiles being in the MW sector.

obrdsc Provides a list of aircraft and missiles that the pilot will be allowed to 
observe when he looks at his radar scope.

pcode Exercises user defined code (production rules).

premob Prepares observational messages about missiles.

preobs Prepares observational messages about aircraft.

prereq Prepares request messages for unobserved aircraft that the pilot is 
sufficiently concerned about.

radar Executive routine for making radar screen observations.

radobs Computes radar errors and cross correlation matrices.

radvlm Calculates the incremental value to be added to the radar sector search 
value as a result of missiles being in the radar sector.

rcv_intent Processes intent to shoot messages.

rcv_orders Processes messages  regarding new orders.

rcvmob Receives radio messages about missiles.

rcvobs Receives radio messages about other aircraft.

rdrsch Performs search of the radar sector and determines if any detections are 
made.

rdrval Calculates the incremental value to be added to the radar sector search 
value as a result of aircraft being in that radar sector.

remm Removes dead missiles from the conscious pilot’s mental model.

rrsnsd Forms observation for each aircraft on the observed list.

rwrobs Constructs observations based upon the contents of the RWR device 
trackbank.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-18 Update:  12/31/97

DRAFT

rwrsch Performs search of the RWR sector and determines if any detections 
are made.

rwrval Calculates the incremental value to be added to the RWR sector search 
value as a result of aircraft/missiles being in the RWR sector.

sectim Initializes the sector search time history.

set_vis_sec Determines the visual sectors in which targets are present.

tkupi Initializes the state vector of the tracker for the first detection of an 
aircraft.

tkupmm Updates the conscious pilot’s mental model regarding the physical state 
of the detected aircraft.

tocobs Performs external transfer of control observations.

upd_ifcmns Updates the interface common blocks.

udsmvl Increases the sector search values as a result of missiles being in that 
sector.

udsval Increases the sector search values as a result of aircraft being in that 
sector.

visobs Makes a list of visual observations and place them in memory.

vissch Performs visual search of a visual sector and determines if any 
detections are made.

vismsl Performs visual search and detect simulation for missiles.

visual Performs visual search and detect simulation for aircraft.

visval Calculates the incremental value to be added to a visual sector search 
value as a result of aircraft perceived to be in that visual sector.

The principal data structures (common blocks) involved in the maneuver selection process
are described below.

/extst/ Stores the external status of all aircraft.

/mind1/ Stores mental model of sensor observations.

/mind2/ Holds value elements for each pilot.

/mind3/ Holds the pilot’s assessment of relationships with other entities.

/mind4/ Holds mental model situational variables.

/mindc/ Stores mental model constants.

/mindd/ Stores information on aircraft believed to be dead.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-19 BRAWLER

DRAFT

/mindlc/ Holds mental model variables that are local to the current 
consciousness event.

/mindms/ Holds mental model perception of missiles.

/mindpr/ Holds production rule variables that influence pilot decisions.

/mypfrm/ Holds data about performance of decision maker’s aircraft at the 
current time.

/schang/ Stores the significant changes list used to determine if a major 
situational update is required.

/sencon/ Holds constants used by sensor devices on aircraft.

/sensed/ Holds information on each detected aircraft during a single 
consciousness event.

Subroutine conevt is the executive that handles pilot consciousness events.  It simulates
pilot functions for one pilot at a time, including the situation update.  After retrieving
required common block data, conevt calls subroutine perfrm to update the pilot’s
knowledge of his aircraft’s current performance parameters. The pilot’s knowledge of his
arcraft’s physical state is updated later, through subroutine mindup which in turn calls
ccself.  Conevt uses subroutines sensor and mindup to update the pilot’s knowledge and
assessment of other platforms. Sensor makes the pilot’s observations of other aircraft and
mindup processes these observations to update and propagate aircraft and missile tracks in
the pilot’s mind.

Subroutine sensor is the executive routine for generating pilot observations of other aircraft
and missiles.  This is accomplished by explicitly simulating pilot observation of his
different sensor displays as well as simulating direct visual observations through the
cockpit canopy.

Once all observations have been made (through messages, sensors and inferred detections),
subroutine mindup is called to merge the new observations with existing information in the
conscious pilot’s mind. Mindup first updates the pilot’s knowledge of his ownship by
calling subroutine ccself.  Subroutine cc2x0 is then called to process new observations on
other aircraft.  After performing initialization tasks, cc2x0 loops through each observation.
A check is made to determine if the observation is worth processing by calling subroutine
cc2x1.  If the observation is a first detection, cc2x3 is called to add the observation to the
conscious pilot’s mental model. If the observation was not a first detection, subroutine
cc2x2 is called to update the pilot’s perception with the new information.  If significant
changes have occurred to an aircraft, such as a newly detected aircraft, messages are
prepared to be sent to flight mates relaying the significant information.

Upon completion of the situation update, subroutine conevt calls subroutine modsel to
select a pilot action based on the updated mental model.  Radio messages to flight mates
are then sent out and a call to makece schedules the next consciousness event for this pilot.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-20 Update:  12/31/97

DRAFT

Subroutine CONEVT

Subroutine conevt is the executive routine for processing consciousness events. The pilot
model situation update is one of the functions that conevt performs. Figure 2.15-2 is the
functional flow diagram that describes the logic used to implement conevt.  The blocks are
numbered for ease of reference in the following discussion.

Block 1 Subroutine inlsvd is called to retrieve data specific to this consciousness event.

Block 2 Test if this aircraft is under Brawler control, or whether it is being controlled by
a manned simulator or some other external process. If the aircraft is not under Brawler
control, return. 

Block 3 Test whether the conscious pilot is dead or alive. If dead, jump to Block 26.

Block 4 Test if this consciousness event is obsolete. If so, jump to Block 26.  A
consciousness event will become obsolete if, after it has been scheduled, some other event
causes the scheduling of another consciousness event for the same pilot at an earlier time
than the one already scheduled.  

Block 5 Subroutine mindin is called to retrieve the data for the pilot’s mental model.

Block 6 Subroutines grdrs, grdrc and gfcsta are called to retrieve radar status, radar
characteristics, and fire control status for the current aircraft.

Block 7 Subroutine flyac is called to update the state vector for this aircraft.

Block 8 Check that the aircraft has not flown into the ground. If it has, jump to Block 26.

Block 9 Test if the user has disabled consciousness events for this aircraft.  This is
actually a two-step test.  If the cev_off  flag is set, indicating that consciousness events are
disabled, a call is made to the production rules to give the user a final chance to unset the
flag.  If it remains set, then jump to Block 24.

Block 10 Subroutine perfrm is called to update the pilot’s perception of his aircraft’s
current performance capabilities.

Block 11 Subroutine fncomi is called to initialize messages to be sent out by the conscious
pilot.

Block 12 Subroutine sensor is called to make visual and sensor observations.  This
routine is detailed below.

Block 13 Test if the consciousness event type is equal to the inferred detection type (7).
If true, continue at Block 14.  If false, skip to Block 15. 

Block 14 Entry point inferl of subroutine  inferd is called to assess inferred aircraft
detections. Inferl is called when a previously unobserved aircraft has just killed a friendly
aircraft.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-21 BRAWLER

DRAFT

Block 15 Subroutine mindup is called to update the mental model of the currently
conscious pilot based upon receipt of radio messages and new observation information.
This routine is detailed below.

Block 16 Subroutine modsel is called to select an action based on the updated mental
model.

Block 17 Subroutine fncom is called to send messages prepared for flight mates.

Block 18 Test whether the conscious pilot has a GCIAWACS controller. If true, continue
at Block 19.  If false, go to Block 20.

Block 19 Subroutine chk_ammo_lev is called to check to see if an out of ammo message
is needed.

Block 20 Test if this is an initial consciousness event for a DLI (deck launched
interceptor). If true, continue at Block 21.  If false, skip to Block 22.

Block 21 Subroutine  pmsdga is called to send a message to an AWACS.

Block 22 Check if any messages have been received. If yes, continue at Block 23.  If no,
skip to Block 24.

Block 23 Subroutine dlmstr is called to delete received messages. Note that the messages
would have already been read in subroutine mindup, so they are not discarded before being
read.

Block 24 Subroutine gcetim is called to determine the time interval to the next self-
planted consciousness event.

Block 25 Subroutine makece is called to plant the next consciousness event in the event
list.

Block 26 Subroutine upd_ifcmns is called to update the interface common blocks.  This
routine is only functional in manned simulator applications and is a null stub for all other
installations of Brawler.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-22 Update:  12/31/97

DRAFT

FIGURE 2.15-2.  CONEVT Functional Flow Diagram (Page 1 of 3).

START

1
Retrieve Event Data

(INLSVD)

2
A/C

Under Brawler
Control

?

3
A/C Alive

?

4
Obsolete

Event
?

5
Retrieve Mental Mode

(MINDIN)

6
Retrieve Radar, Fire Control Status

(GRDRS, GRDRC, GFCSTA)

7
Update State Vector for

Current A/C
 (FLYAC)

Yes

Yes

 A

No

B

Yes

No

No

8
A/C

Flown into
Ground

?

9
Consciousness

Event Been
Cancelled

?

10
Update Performance Data

(PERFRM)

11
Initialize Message Sending

(FNCOMI)

Yes B

Yes D

No

No

C



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-23 BRAWLER

DRAFT

FIGURE 2.15-2.  CONEVT Functional Flow Diagram (Page 2 of 3).

12
Get Sensor Information

(SENSOR)

13
Consciousness
Event Type =

Inferred Detection
?

14
Make the Inferred

Detection
(INFERL)

15
Update Mental Model of Currently

Conscious Pilot
(MINDUP)

No

Yes

C

16
Select Action Based on Updated

Mental Model
(MODSEL)

17
Send Messages Prepared for

Flight Mates
(FNCOM)

18
A/C

Have GCI
Controller

?

20
Initial

Consciousness event
for a DLI

?

19
Check if out of

Ammo Message
Needed

(CHK_AMMO_LEV)

21
Send Message to AWACS

(PMSDGA)

No

Yes

Yes

No

E



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-24 Update:  12/31/97

DRAFT

FIGURE 2.15-2.  CONEVT Functional Flow Diagram (Page 3 of 3).

Subroutine PERFRM

Subroutine perfrm computes aircraft performance variables. Figure 2.15-3 is the functional
flow diagram that describes the logic used to implement perfrm.  The blocks are numbered
for ease of reference in the following discussion.

Block 1. Initialize variables for the current aircraft. This includes transferring previously
calculated values from aircraft status variables to pilot mental model variables as well as
calculating new values for corner velocity and min and max instantaneous Gs base upon
current aircraft state.

Block 2. Test if the entity’s mach number is precisely zero. If the mach number is zero,
assume that the entity is a SAM site and set the maximum sustained Gs, drag versus lift
tables and angle of attack versus lift tables to zero. For a non zero mach number, calculate

22
Messages
Received

?

24
Determine Interval to Next

Self Called CE
(GCETIM)

25
Plant Next CE into Event Stream

(MAKECE)

23
Delete Received

Messages
(DLMSTR)

No

Yes

D

B

E

26
Update Interface Commons

(UPD_IFCMNS)

RETURN

A



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-25 BRAWLER

DRAFT

these values (see Blocks 4-6 below).  Blocks 2 and 3 are a modification that will be
available in version 6.3.  Version 6.2 executes Blocks 4-6 unconditionally.

Block 3. For the case where the entity’s mach number is zero (entity assumed to be a
SAM site), set the maximum sustained Gs, drag versus lift tables and angle of attack versus
lift tables equal to zero.

Block 4. For the case where the mach number is non zero (an aircraft), calculate a value
for maximum sustained Gs (gmxsut) as a function of mach, current altitude, dynamic
pressure, aircraft weight and throttle setting.

Blocks 5-6 are in a loop over the number of entries in the drag versus lift and angle of attack
versus lift tables.

Block 5. Calculate drag versus lift and angle of attack versus lift table entry as a function
of mach, dynamic pressure and lift.  These are computed via calls to functions drag and
aoa.

Block 6. Test if there are more entries in the tables remaining to be processed.  If so, go
back to Block 5.  If not, continue with Block 7.

Blocks 7-13 calculate the maximum G value (gmxsu) which is used later to determine the
maximum turn rate. The gmxsu is not intended as the true maximum sustained G capability.
It is computed for use in later planning and represents the maximum Gs that the pilot will
use in any situation except extreme emergency.

Block 7. Test if the aircraft has a firing interest. If the missile mode (mslmd) is equal to
1, 2 or 3 then the aircraft has a firing interest and Block 8 is executed.

Block 8. Set the maximum Gs (gmxsu) equal to the maximum load possible at maximum
thrust.

Block 9. Test if there are any hostile aircraft or hostile missiles nearby (<20 nmi). If no
hostiles are in the vicinity, then there is no need for hard turns and Block 10 is executed.

Block 10. Set the maximum Gs (gmxsu) equal to the maximum sustained G (gmxsut) value
calculated previously (Block 4).

Block 11. Test if the aircraft is travelling faster than Mach 1.0 or more than 100 feet/sec
faster than its corner velocity.  If either condition is true, go to Block 12.  If not, go to Block
13.  There is an error in the Mach test in this code in version V6.2 that has been corrected
in version V6.3.

Block 12. Hostile are in the vicinity and you are going fast enough to turn at the aircraft’s
maximum load, so set maximum Gs (gmxsu) to the maximum load at maximum thrust
(gmxin).

Block 13. Set maximum Gs (gmxsu) to the maximum sustained G value (gmxsut).

Blocks 14 and 15  are a modification that will be available in version 6.3.  Version 6.2
executes Block 16 unconditionally.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-26 Update:  12/31/97

DRAFT

Block 14. Test for zero speed.  If so, assume that this is a SAM site and go to Block 15.  If
not, go to Block 16.

Block 15. The maximum turn rate (wmax) and drag at maximum sustained Gs (drgsu) are
zeroed for SAM sites.

Block 16. The maximum turn rate (wmax) is calculated from maximum Gs (gmxsu) and
aircraft speed. The drag at maximum sustained Gs is calculated using values from the drag
versus lift tables computed in Block 5. 

Block 17. Subroutine effthr is called to calculate the effective gross thrust and effective
propulsive drag for the current state of the aircraft.

Block 18. Subroutine effthr is called to calculate the maximum effective gross thrust and
the maximum effective propulsive drag.

Block 19. Subroutine effthr is called to calculate the minimum effective gross thrust and
the minimum effective propulsive drag.

Block 20. The current drag, minimum and maximum longitudinal acceleration are
calculated.

Block 21. The minimum and maximum allowable angles of attack are calculated.

Blocks 22-23 are in a loop over the number of entries in the drag versus angle of attack
tables.

Block 22. Calculates a drag versus angle of attack table entry.

Block 23. If table not yet filled, go back to Block 22.  If table finished, continue to Block
24.

Blocks 24-28 are in a loop over the number of throttle settings in the longitudinal force
versus throttle tables. There are 5 throttle settings:

1. drag devices deployed
2. damaged aircraft, set to small negative value
3. idle
4. military thrust
5. full afterburner

Block 24. Subroutine thrust is called to calculate the gross thrust due to gas generator and
afterburner output.

Block 25. Test if drag devices are deployed. If deployed, go to Block 26.  If not, go to
Block 27.

Block 26. Drag devices have been deployed, calculate the drag due to drag devices via a
call to subroutine fdddrg.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-27 BRAWLER

DRAFT

Block 27. Compute the longitudinal force for this throttle setting as the sum of the thrust
from the gas generator and afterburner minus any drag from the drag devices.

Block 28. Test to compute another table entry if the table is not full yet.  If table not
finished, go to Block 24.  If finished, return.

FIGURE 2.15-3.  PERFRM Functional Flow Diagram (Page 1 of 3).

START

2
Mach

Number = 0
?

1
Initialize Variables for the

Current A/C

3
Set Max Sustained G's
Drag and AOA to Zero

4
Calculate Max Sustained G's

Loop Over the Number of Entries
in Drag and AOA Tables

5
Calculate Drag vs. Lift and

AOA vs. Lift Tables

6
Entries

Remaining in
Table

?

7
Firing
Intent

?

8
Max. Turn Rate Based on

Structural Limit

9
Minimum

Range to Hostile
A/C or MSL>

20NMI
?

10
Max Turn Rate Based on

Max Sustained G's

No

No

A

No

Yes

Yes

Yes

Yes

B

B

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-28 Update:  12/31/97

DRAFT

FIGURE 2.15-3.  PERFRM Functional Flow Diagram (Page 2 of 3).

A

11
Mach > 1.0

or
Speed > Corner

Velocity
+100

?

13
Max Turn Rate Based on

Max Sustained G's

14
Mach = 0

?

16
Calculate Max Turn Rate and

Drag at Max Sustained Turn Rate

17
Calculate Thrust and Drag

(EFFTHR)

18
Calculate Max Thrust and

Max Drag
(EFFTHR)

19
Calculate Min Thrust and

Min Drag
(EFFTHR)

21
Calculate Min and Max

Allowable AOA

C

12
Max Turn Rate Based on

Structural Limit

15
Max Turn Rate = 0

Drag at Max Sustained Rate = 0

B

No

No

Yes

Yes

20
Calculate Max and Min
Longitudinal Accleration



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-29 BRAWLER

DRAFT

FIGURE 2.15-3.  PERFRM Functional Flow Diagram (Page 3 of 3).

Subroutine SENSOR

Subroutine sensor is an executive routine for conducting sensor searches. Figure 2.15-4 is
the functional flow diagram that describes the logic used to implement sensor.  The blocks
are numbered for ease of reference in the following discussion.

Block 1. Initialize common blocks and local arrays.

C

Loop Over Entries in Drag vs. AOA Table

22
Calculate Drag vs. AOA Table Entry

23
Table

Entries Remaining
?

Loop Over Number of Throttle Settings

24
Calculate Gross Thrust

(THRUST)

25
Drag

Device Deployed
?

27
Compute Longitudinal Force

28
More

Throttle Settings
?

RETURN

26
Calculate Drag Due to

Drag Devices

No

No

No

Yes

Yes

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-30 Update:  12/31/97

DRAFT

Block 2. Subroutine a_lim is called to limit the acceleration vector to avoid negative
speeds during the projection of  aircraft trajectories.

Block 3. Subroutine projw is called to project the aircraft to the current simulation time.

Block 4. Test if this is the first consciousness event for this aircraft. If true, go to Block 5.
If false, go to Block 6.

Block 5. Subroutine sectim is called to initialize the sector search time history.

Block 6. Subroutines setsvl is called to initialize the sector search priority values for
aircraft and missile search (this routine is detailed below).

Block 7. Subroutine acnear is called to adjust the sector search priority values if aircraft
are present in that sector (this routine is detailed below).

Block 8. Subroutine mslner is called to adjust the sector search priority values if missiles
are present in that sector.

Block 9. Test to see if this consciousness event is associated with the transfer of control
of this aircraft into Brawler from another simulation, which can happen when running in
confederation with other simulations.  If so, go to Block 10.  If not, go to Block 11.

Block 10. Subroutine tocobs is called to create external transfer of control “observations.”
These are used to initialize the pilot’s awareness of other players at the instant of the
transfer of control.

Block 11. Subroutine set_vis_sec is called to determine which visual sectors may contain
targets.

Blocks 12 through 14 are in a loop over the number of search sectors.

Block 12. Subroutine sctsch is called to search individual sectors from the highest valued
sectors to the lowest valued sectors (this routine is detailed below).

Block 13 Test if any search time remains. If true, continue to Block 14.  If false, jump to
Block 15.

Block 14. Test if any sectors remain to be searched. If true, go back to Block 12.
Otherwise, end the searching of sectors and proceed to block 15.

Block 15. Test if aircraft has a functioning RHAW device. If true, go to Block 16.  If false,
go to Block 17.  This is an obsolete feature.  This flag should never be true.

Block 16. Subroutine rdrhaw is called to update the pilot’s perception of RHAW
detections.

Block 17. Subroutine pcode is called to perform any user defined manipulations of the
observations in the productions rules.  The intent here is to allow the user to enhance or
degrade the pilot’s ability to learn or infer the type of an observed aircraft rather than
creating or deleting the observations themselves.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-31 BRAWLER

DRAFT

FIGURE 2.15-4.  SENSOR Functional Flow Diagram (Page 1 of 2).

START

1
Initialize Commons and Arrays

2
Limit Accleration Vector

(A_LIM)

3
Project Aircraft Trajectory

(PROJW)

4
First

CE for this
A/C

?

5
Initialize Sector Search

Time History
(SECTIM)

6
Initlialize Search
Priority Values

(SETSVL)

7
Adjust Values if A/C are

Perceived Present in that
Sector

(ACNEAR)

8
Adjust Values if Missiles are

Perceived Present in that
Sector

(MSLNER)

9
CE

Type = Transfer
of Control

?

10
Perform External Transfer
of Control Observations

(TOCOBS)

A

No

Yes

No

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-32 Update:  12/31/97

DRAFT

FIGURE 2.15-4.  SENSOR Functional Flow Diagram (Page 2 of 2).

Subroutine SETSVL

Subroutine setsvl initializes sector search values before each search on the basis of the time
elapsed since the search of each sector and user input parameters for each sector, that
indicate their relative importance. Figure 2.15-5 is the functional flow diagram that
describes the logic used to implement setsvl.  The blocks are numbered for ease of reference
in the following discussion.

A

11
Determine Visual Sectors in

Which Targets Reside
(SET_VIS_SEC)

Loop Over Number of Sectors

12
Search Sectors, Highest Valued

to Lowest Valued
(SCTSCH)

13
Out

of Search
Time

?

14
Sectors

Remaining to be
Searched

?

15
A/C

has Functioning
RHAW

?

17
Execute User Defined Code

(PCODE (2))

RETURN

16
Update Pilots Perception

of RHAW Detection
(RDRHAW)

No

No

No

Yes

Yes

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-33 BRAWLER

DRAFT

Block 1. Initialize sector search values using values read in from the SENCON file
during initialization.

Block 2. Test if this is the first consciousness event for this pilot. If true, jump to Block
4, so as to not inhibit visual search sector number 5. If false, go to Block 3. This sector is
below and to the rear of the pilot and is normally blocked by the body of the aircraft.  Search
of this sector is allowed on the first pass only, to allow the pilot to view any flight mates in
that area. At all other times visual search sector 5 is inhibited.

Block 3. Inhibit visual search sector 5 by setting its value to zero.

Block 4. Test if the aircraft has a sensor fusion device. If true, continue at Block 5.  If
false, jump to Block 6.

Block 5. Zero sector search values for all avionics except the sensor fusion device
(sectors 9-19, excluding sector 15 are zeroed).  Jump to Block 23.

Blocks 6-22 are executed if the aircraft does not have a sensor fusion device. Checks are
made for the existence of other avionics devices and sector search values are zeroed for the
appropriate sector if that device does not exist or is not functional.

Block 6. Set the sector search value for the integrated display (SFD) equal to zero, since
it does not exist on this aircraft.

Block 7. Test whether the aircraft has any radar antennas turned on. If no, go to Block 8.
If yes, jump to Block 9.

Block 8. The sector search value for the radar sector is set to zero, since no antennas are
presently turned on.

Block 9. Test if the aircraft has an infrared search and track device (IRST). If no, go to
Block 10.  If yes, jump to Block 11.

Block 10. The sector search value for the IRST sector is set to zero, since no IRST device
is present.

Block 11. Test if the aircraft has a radar warning receiver (RWR). If no, go to Block 12.
If yes, jump to Block 13.

Block 12. The sector search value for the RWR sector is set to zero, since no RWR device
is present.

Block 13. Test if the aircraft has a missile approach warning (MAW) device. If no, go to
Block 14.  If yes, jump to Block 15.

Block 14. The sector search value for the MAW sector is set to zero, since no MAW
device is present.

Block 15. Test if the aircraft has a missile warning (MW) device. If no, go to Block 16.  If
yes, jump to Block 17.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-34 Update:  12/31/97

DRAFT

Block 16. The sector search value for the MW sector is set to zero, since no MW device is
present.

Blocks 17-20 are new additions for version V6.3.  For version V6.2, jump to Block 21.

Block 17. Test if the aircraft has a electronic support measure (ESM) device. If no, go to
Block 18.  If yes, jump to Block 19.

Block 18. The sector search value for the ESM sector is set to zero, since no ESM device
is present.  Jump to Block 21.

Block 19. Test if the aircraft has any active ESM fields of view (FOV). If no, go to Block
20.  If yes, jump to Block 21.

Block 20. The sector search value for the ESM sector is set to zero, since no ESM fields
of view are active.

Block 21. The sector search values for the reserved sectors (16-18) are set to zero.

Block 22. The initial sector search value for the identify friend or foe (IFF) sector is set to
zero, since you only want to look at this device to identify a target. Modifiers to this sector
search value may be applied through subroutines that adjust values based on other aircraft
being present.

Blocks 23-27 loop over the number of search sectors to modify sector values based on the
time since the last search of that sector.

Block 23. Test the desired time between searches for this sector. If not zero, go to Block
24.  If zero, go to Block 25.  Desired revisit times for each sector are read in from the
SENCON file during initialization.

Block 24. Sector search values are modified using a one minus a Cauchy function of the
time since the last observation of this sector, scaled by the desired revisit time.  

Block 25. Test if the current sector is a visual sector (1-8). If so, go to Block 26.  If not,
jump to Block 27.

Block 26. Add random jitter to the sector value to break ties among the 8 visual sectors.
Jitter values range from 0.0 to 0.001.

Block 27. Test if there are any more sectors remaining to be processed in this loop. If true,
process the next sector (jump back to block 23).  If false, return.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-35 BRAWLER

DRAFT

FIGURE 2.15-5.  SETSVL Functional Flow Diagram (Page 1 of 2).

START

1
Initialize Sector Search Values

2
First
CE
?

3
Inhibit Visual Search Sector 5

4
Does

A/C have a
SFD

?

6
Set Integrated Display Sector Value = 0

5
Zero all Avionics, Except IND

B

7
All RDR

Antennas
are Off

?

9
Does

A/C Have a Working
IRST Device

?

11
Does

A/C have a Working
RWR Device

?

13
Does

A/C have a Working
MAW device

?

8
Set RDR Sector Search Value = 0

10
Set IRST Sector Search Value = 0

12
Set RWR Sector Search Value = 0

14
Set MAW Search value = 0

A

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-36 Update:  12/31/97

DRAFT

FIGURE 2.15-5.  SETSVL Functional Flow Diagram (Page 2 of 2).

A

15
Does

A/C have a Working
MW Device

?

17
Does

A/C have a stet
ESM Device

?

19
Are

any ESM FOV
Active

?

21
Set Reserved Proprietary Search Sector

Values = 0

22
Initialize IFF Search Sector Value = 0

Loop Over Number of Search Sectors

23
Is the

Desired Time Between
Searches of this Sector

! = 0
?

25
Visual
Sector

?

27
More

Sectors
?

RETURN

16
Set MW Sector Search Value = 0

18
Set ESM Search Value = 0

20
Set ESM Search Value = 0

24
Modify Sector Search Value

Using a Cauchy Function

26
Add Jitter to Break Ties in

Visual Sectors

B

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Yes

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-37 BRAWLER

DRAFT

Subroutine ACNEAR

Subroutine acnear counts and identifies aircraft that the pilot believes he may see in each
observation sector and then updates the sector search values accordingly. Figure 2.15-6 is
the functional flow diagram that describes the logic used to implement acnear.  The blocks
are numbered for ease of reference in the following discussion.

Blocks 1-29 are in a loop over the number of aircraft in the detailed consideration group for
the currently conscious pilot.

Block 1. Test if the aircraft being checked is the conscious pilot’s aircraft. If true,
increment loop to next aircraft on list.

Block 2. Subroutine prjacc is called to make a constant acceleration projection of the
aircraft checked to bring it up to the current simulation time.

Block 3. The line of sight (LOS) vector and line of sight range are calculated via calls to
vector utilities vsub and xmag.

Block 4. Subroutine getsec is called to calculate which search sectors the aircraft under
consideration resides in. It sets a flag for each sensor sector that the aircraft resides in.  If
the range to the target aircraft is less than 50,000 feet, getsec will also return the number of
the visual sector (1-8) containing the target.

Block 5. Test if the aircraft under consideration is in one of the eight visual sectors. If
true, go to Block 6.  If not, go to Block 8.

Block 6. Subroutine incsec is called to update the list of aircraft in the visual search
sector.

Block 7. Subroutine udsval is called to increase the visual sector search value as a result
of an aircraft being in that sector.

Block 8. Test if the aircraft under consideration is in the radar sector. If true, go to
Block 9.  If false, jump to Block 12.

Block 9. Subroutines grdrs and grdrc are called to make the radar status and radar
characteristics data current.

Block 10. Subroutine incsec is called to update the list of aircraft in the radar search sector.

Block 11. Subroutine udsval is called to increase the radar sector search value as a result
of an aircraft being in that sector.

Block 12. Test if the aircraft under consideration is in the infrared search and track (IRST)
sector. If true, go to Block 13.  If false, go to Block 15

Block 13. Subroutine incsec is called to update the list of aircraft in the IRST search
sector.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-38 Update:  12/31/97

DRAFT

Block 14. Subroutine udsval is called to increase the IRST sector search value as a result
of an aircraft being in that sector.

Block 15. Test if the aircraft under consideration is in the identify friend or foe (IFF)
sector. If true, go to Block 16.  If false, jump to Block 23.

Block 16. Subroutine incsec is called to update the list of aircraft in the IFF search sector.

Blocks 17-22 are contained within a loop over all IFF devices on the conscious pilot’s
aircraft.

Block 17. Subroutine giffs is called to load the next IFF device into memory.

Block 18. Subroutine giffc is called to update the IFF characteristics data.

Block 19. Test if IFF data was requested in the previous consciousness event. If true, go
to Block 20.  If false, go to Block 21.

Block 20. Set the IFF array value to indicate that an aircraft may be observed by this IFF
device. The highest scoring device will later be the one search by the pilot during the search
phase, time permitting.

Block 21. Subroutine udsval is called to increase the IFF sector search value as a result of
an aircraft being in that sector.  Following this, the value of the variable prffmd is tested to
allow the user to turn this IFF device off via production rules.

Block 22. Test if there are more IFF devices to be processed, if true, process the next IFF
device (go back to Block 17).

Block 23. Test if the aircraft under consideration is in the radar warning receiver (RWR)
sector. If true, go to Block 24.  If false, go to Block 26.

Block 24. Subroutine incsec is called to update the list of aircraft in the RWR search
sector.

Block 25. Subroutine udsval is called to increase the RWR sector search value as a result
of an aircraft being in that sector.

Block 26. Test if the aircraft under consideration is in the integrated display (IND) sector.
If true, go to Block 27.  If false, go to Block 29.

Block 27. Subroutine incsec is called to update the list of aircraft in the IND search sector.

Block 28. Subroutine udsval is called to increase the IND sector search value as a result of
an aircraft being in that sector.

Block 29. Test if there are any more aircraft in the detailed consideration list. If true,
process the next aircraft in the list (jump back to Block 1).

Block 30. Determine the most valuable IFF device as scored from the number of aircraft
each IFF device detected (Blocks 16-22).

Block 31. Put SAMs that are in the same flight on each others’ nearby list for the first
consciousness event only. This guarantees that the SAMs will know about each other,
which should be the case if they are in the same flight.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-39 BRAWLER

DRAFT

FIGURE 2.15-6.  ACNEAR Functional Flow Diagram (Page 1 of 3).

START

Loop Through the Number of A/C
in the Detailed Consideration List

1
A/C

= Self
?

2
Make a Constant Acceleration

Projection of A/C
(PRJACC)

3
Calculate LOS Vector and Range

4
Calculates Which Sectors the A/C Resides in

(GETSEC)

5
Is

A/C in One of
the 8 Visual

Sectors
?

6
Increments Sector Arrays
for Sector Containing A/C

(INCSEC)

7
Updates Sector Search Values

for Known Aircraft
(UDSVAL)

8
Is

A/C in
Radar Sector

?

9
Make Radar Status and Data

Current
(GRDRC, DRDRS)

10
Increment Sector Arrays

(INCSEC)

11
Update Sector Values for

Known A/C
(UDSVAL)

12
Is A/C
in IRST
Sector

?

13
Increment Sector Arrays

(INCSEC)

14
Update Sector Values for

Known A/C
(UDSVAL)

A

No

No

No

No

Yes

C

Yes

Yes

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-40 Update:  12/31/97

DRAFT

FIGURE 2.15-6.  ACNEAR Functional Flow Diagram (Page 2 of 3).

15
Is

A/C in
IFF Sector

?

16
Increment Sector Arrays

(INCSEC)

Loop Through # of IFF Devices

17
Load IFF into Memory

(GIFFS)

18
Updates IFF Characteristics Data

for Specific IFF Device
(GIFFC)

19
IFF

Data Requested
in Last

CE
?

20
Set IFF Array

to Indicate A/C is in this IFF
Sector

21
Update Sector Values for

Known A/C, Production Rules
(UDSVAL)

22
More

IFF Devices
?

23
Is

A/C in
RWR Sector

?

24
Increment Sector Arrays

(INCSEC)

25
Update Sector Values for

Known A/C
(UDSVAL)

26
Is A/C
in IND
Sector

?

27
Increment Sector Arrays

(INCSEC)

28
Update Sector Values for

Known A/C
(UDSVAL)

29
More
A/C in

List
?

D

C

No

No

No

Yes

Yes

Yes

No

Yes

Yes

No

A

No

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-41 BRAWLER

DRAFT

FIGURE 2.15-6.  ACNEAR Functional Flow Diagram (Page 3 of 3).

Subroutine RDRVAL

Subroutine rdrval calculates the incremental value to be added to the radar sector search
value as a result of aircraft being in the radar sector. Figure 2.15-7 is the functional flow
diagram that describes the logic used to implement rdrval.  The blocks are numbered for
ease of reference in the following discussion.

Block 1. Test if the target aircraft is in the conscious pilot’s mental model. If not, then
return to the calling routine (udsval), otherwise continue to Block 2.

Block 2. Test if the target aircraft is known to be a friendly aircraft. If yes, go to Block 3.
If no, go to Block 6.

Block 3. Set the time constant for observation to every 10-15 seconds, based on
proximity to conscious pilot. Friendly aircraft that are close to the conscious pilot are set
for observation every 10 seconds. The time constant increases with distance from the
conscious pilot, up for observation up to 15 seconds for friendly aircraft at extreme range.

Block 4. An importance value of 0.5 is assigned to all friendly aircraft. 

Block 5. The incremental sector search value is calculated as the importance value times
one minus a Cauchy function, with time since last observation and the time constant (Block
3) as the driving parameters of the Cauch function.  After this, return.

Block 6. This block is the beginning for the calculation of the sector search value for
hostile and unknown aircraft. The importance variable is calculated as a function of
engagement utility, value of self and the last computed value for engaging the hostile
aircraft.

Block 7. Subroutine asstgt is called to retrieve the conscious pilot’s target assignment
from his flight leader.

D

30
Determine Most Valuable

IFF Device

31
Put SAMS in the Same Flight in
each Others' Visual Sector #8

 for First CE

RETURN



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-42 Update:  12/31/97

DRAFT

Block 8. Test if the aircraft under consideration is the target assigned by the flight leader.
If true, go to Block 9.  If false, jump to Block 10.

Block 9. The importance variable, calculated in Block 6, is incremented by 0.5 due to the
aircraft being the assigned target of the conscious pilot.

Block 10. Test if the aircraft is the selected target of the conscious pilot. If true, go to
Block 11.  If false, jump to Block 12.

Block 11. The importance variable, calculated in Block 6, is incremented by 0.5 due to the
target aircraft being the selected target of the conscious pilot.

Block 12. Set the time constant for observation of the target aircraft at every 2-10 seconds,
based on its proximity to the conscious pilot. Hostile or unknown aircraft very close to the
conscious pilot’s aircraft are set for an observation every 2 seconds. The time constant
increases with distance from the conscious pilot, up to 10 seconds for hostile aircraft at
extreme range.

Block 13. The incremental sector search value is calculated as the importance value times
one minus a Cauchy function, with the time since the last observation and the time constant
(Block 12) as the driving parameters of the Cauchy function.

Block 14. Test if the conscious pilot is trying to achieve single target track (STT) on the
hostile target aircraft and that the target is in the field of the antenna that he is trying to lock.
If true, go to Block 15.  If false, return.

Block 15. Award additional value to the incremental sector search value if the target is
likely to remain in the antenna FOR for the next 10 seconds and the radar sector has not
been looked at for at least one second.  This is computed using a border function based on
range plus range rate times 10 seconds, multiplied by a Cauchy function based on time
since last radar search.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-43 BRAWLER

DRAFT

FIGURE 2.15-7.  RDRVAL Functional Flow Diagram (Page 1 of 2).

START

1
A/C

in Mental
Model

?

A

2
A/C

Friendly
?

4
Set Importance to 0.5

5
Calculate Sector Search

Incremental Value

A

6
Calculate Importance Variable

7
Get Target Assignment from

flight Leader
(ASSTGT)

8
Is A/C

Assigned
Target

?

9
Increment Importance

Variable

10
Is A/C

my Selected
Target

?

11
Increment Importance

Variable

12
Set Observation Time

to 2-10 Seconds

B

Yes

No

Yes

No

No

Yes

Yes

No

3
Set Observation Time

to 10-15 Seconds



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-44 Update:  12/31/97

DRAFT

FIGURE 2.15-7.  RDRVAL Functional Flow Diagram (Page 2 of 2).

Subroutine SCTSCH

Subroutine sctsch makes search sector decisions and conducts sector searches.
Figure 2.15-8 is the functional flow diagram that describes the logic used to implement
sctsch.  The blocks are numbered for ease of reference in the following discussion.

Block 1. The end of search flag is set to FALSE. This flag will later be set to TRUE if
either the search time is exhausted or there are no more sectors remaining to be searched.

Block 2. Test if the time available to search is less than 0.1 second. If true, go to Block
3.  If false, jump to Block 4.

Block 3. Set the end of search flag equal to TRUE. Return control to calling routine
(sensor) which will terminate the loop, ending the pilot’s search of avionics and visual
sectors.

Block 4. Calculate the remaining time available for the pilot to search the avionics and
visual sectors. 

Block 5. Test if the visual mode flag, hrlmode(1) is set. If true, go to Block 6.  If false,
jump to Block 7.

Block 6. Reset the time available to search equal to 0.5 second.

Block 7. Subroutine bstsec is called to determine which sector should be searched. It
returns the sector number of the sector with the highest sector search value (previously
determined in routines setsvl and, for the radar sector case, rdrval).

Block 8. Test if any sectors remain to be searched. If no sectors remain, go to Block 9.
If there are sectors left, jump to Block 10.

Block 9. Set the end of search flag equal to TRUE.  Return.

Block 10. Initialize the time used for the search to be the smaller of 1 second or the time
available for searching.   If this is the first consciousness event for this pilot, set the time of
the observation to the current time.  Otherwise, set the time at which the observation is
made to the time at the start of the search plus one half of the time used.

B

13
Calculate Sector Search

Incremental Value

14
Trying

for STT on
Target

?

RETURN

15
Add to Sector
Search Value

A

Yes

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-45 BRAWLER

DRAFT

Block 11. Test if the highest scoring search sector is a visual sector. If true, go to Block 12.
If false, go to Block 13.

Block 12. Subroutine vissch is called to perform a visual search of a single sector and
determine if what observations are made and how much time is used to make them.

Block 13. Test if the highest scoring search sector is the radar sector. If true, go to
Block 14.  If not, go to Block 15.

Block 14. Subroutine rdrsch is called to perform a search of the radar sector and determine
what observations are made and how much time is used to make them.

Block 15. Test if the highest scoring search sector is an infrared search and track (IRST)
sector. If true, go to Block 16.  If false, go to Block 17.

Block 16. Subroutine irssch is called to perform a search of the IRST sector and determine
what observations are made and how much time is used to make them.

Block 17. Test if the highest scoring search sector is an identify friend or foe (IFF) sector.
If true, go to Block 19.  If false, go to Block 19.

Block 18. Subroutine iffsch is called to perform a search of the IFF sector and determine
what observations are made and how much time is used to make them.

Block 19. Test if the highest scoring search sector is a missile warning (MW) sector. If
true, go to Block 20.  If false, go to Block 21.

Block 20. Subroutine mwsch is called to perform a search of the MW sector and determine
what observations are made and how much time is used to make them.

Block 21. Test if the highest scoring search sector is a missile approach warning (MAW)
sector. If true, go to Block 22.  If false, go to Block 23.

Block 22. Subroutine mawsch is called to perform a search of the MAW sector and
determine what observations are made and how much time is used to make them.

Block 23. Decision whether the highest scoring search sector is a radar warning receiver
(RWR) sector. If true, go to Block 24.  If false, go to Block 25.

Block 24. Subroutine rwrsch is called to perform a search of the RWR sector and
determine what observations are made and how much time is used to make them.

Block 25. Decision whether the highest scoring search sector is an integrated display
(IND) sector. If true, go to Block 26.  If false, go to Block 27.

Block 26. Subroutine indsch is called to perform a search of the IND sector and determine
what observations are made and how much time is used to make them.

The ESM device is an enhancement that will be available in Version V6.3.  For version
V6.2, return at this point.  For V6.3, continue with Block 27.

Block 27. Decision whether the highest scoring search sector is an electronic support
measures (ESM) sector. If true, subroutine esmsch is called to perform a search of the ESM
sector.

Block 28. Subroutine esmsch is called to perform a search of the ESM sector and
determine what observations are made and how much time is used to make them.  Then
return.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-46 Update:  12/31/97

DRAFT

FIGURE 2.15-8.  SCTSCH Functional Flow Diagram (Page 1 of 3).

START

1
Reset End of Search Flag = FALSE

2
Time

Left to Search
< 0.1
SEC

?

3
Set End of Search Flag = TRUE

4
Calculate Time Available to Search

5
Visual

Mode (1) Flag
Set
?

6
Available Search Time = 0.5 sec

7
Determine Sector to be

Searched
(BSTSEC)

8
Sectors

Remaining to be
Searched

?

9
Set End of Search Flag = TRUE

10
Initialize for 1 Second Visual

Search

11
Best

Sector a Visual
Sector

?

12
Perform Visual Sector

Search
(VISSCH)

B
A

A

A
No

No

Yes

No

Yes

No

Yes

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-47 BRAWLER

DRAFT

FIGURE 2.15-8.  SCTSCH Functional Flow Diagram (Page 2 of 3).

B

13
Best

Sector a
Radar Sector

?

15
Best

Sector an
IRST Sector

?

17
Best

Sector an
IFF Sector

?

19
Best

Sector a MW
Sector

?

21
Best

Sector a MAW
Sector

?

23
Best

Sector a RWR
Sector

?

C

14
Perform Radar Sector

Search
(RDRSCH)

A

16
Perform IRST Sector

Search
(IRRSCH)

A

18
Perform IFF Sector

Search
(IFFSCH)

A

20
Perform a MW Sector

Search
(MWSCH)

A

22
Perform a MAW Sector

Search
(MAWSCH)

A

24
Perform a RWR Sector

Search
(RWRSCH)

A

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-48 Update:  12/31/97

DRAFT

FIGURE 2.15-8.  SCTSCH Functional Flow Diagram (Page 3 of 3).

Subroutine OBRDSC

Subroutine obrdsc produces a list of aircraft and missiles that the pilot will to observe when
he looks at his radar scope. Figure 2.15-9 is the functional flow diagram that describes the
logic used to implement obrdsc.  The blocks are numbered for ease of reference in the
following discussion.

Block 1. Initialize time spent looking at the radar screen to be one second. This time will
later be incremented by 0.1 second for each track displayed on the radar scope (Block 14).

Blocks 2-17 are in a loop over the maximum number of tracks that the radar trackbank may
contain.

Block 2. Test if the current track is a valid track. If false, increment the track counter and
go back to the top of the loop. Otherwise, continue processing the current track.

Block 3. Subroutine rdrgtt is called to obtain the radar track data from memory.

Block 4. Test if range information is available for this track. If not, go to Block 5.  If so,
go to Block 6.

Block 5. The distance to the radar track is set equal to one. This is used when no range
information is available.

Block 6. The distance to the radar track from the conscious pilot’s aircraft position and
the radar track position are calculated via a call to the function dist.

C

25
Best

Sector an IND
Sector

?

27
Best

Sector an ESM
Sector

?

RETURN

26
Perform an IND Sector

Search
(INDSCH)

A

28
Perform an ESM Sector

Search
(ESMSCH)

No

No

Yes

Yes

A



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-49 BRAWLER

DRAFT

Block 7. Test if the distance to the radar track is greater than the scope limit. The scope
limit is the maximum range that the radar scope is currently displaying targets. This is
initialized to a value of 1000 nmi so as to always display all tracks, but can be reset through
production rules. If the track is outside the limits, increment the track counter and proceed
to the top of the loop (jump to Block 17). Otherwise, continue processing the current track.

Block 8. Subroutine rrtklh is called to determine the last radar hit time, mode and antenna
number for this track.

Block 9. Test if the time of the last update (hit on radar track) is valid. This is a defensive
check, since the track update time should always be a valid time.  The ESA radar is run for
a short time, given by the variable iniint, before the simulation starts in order to build up a
reasonable set of tracks at t=0, so valid update times can range from -iniint to the current
simulation time.   For non ESA radars, valid update times can range from zero to the current
update time.  If the update time is not valid, go to Block 10.  Otherwise, continue processing
the current track.

Block 10. Subroutine nabort is called to terminate the run and print diagnostic messages
due to an invalid track update time (see Block 9).

Block 11. Test if the track has disappeared from the radar scope due to maximum display
time limits. If the radar mode is scan or single target track (STT) and the time since the last
track update is greater than the duration time on the radar scope, then this track has faded
from view.  Skip it, increment the track counter and proceed to the top of the loop.
Otherwise, continue processing the current track. The duration time on the radar scope is
calculated as the number of frames stored on the display times the nominal frame time.  The
number of frames stored is a characteristic of the radar and is read in during initialization.

Block 12. Test if the track is established and the radar is in track while scan (TWS) mode
or SPOT mode. If not, then increment the track counter and proceed to the top of the loop.
Otherwise, continue processing the current track.

Block 13. Test if the track is established and the radar is an ESA radar. If not established,
then increment the track counter and proceed to the top of the loop. Otherwise, continue
processing the current track.

Block 14. The track has passed cuts and will be displayed on the scope. Increment the
search time by 0.1 second for the pilot to look at this track on the radar scope.

Block 15. Test if the track has been updated since the last radar search. If it has, go to
Block 16.  Otherwise, the track hasn’t changed, so there is no new information to be gained
by generating and processing an observation.  Increment the track counter and go back to
the top of the loop.

Block 16. Subroutine mklosb is called to add this track to the cumulative list of entities that
will be observed.

Block 17. Test if there are any tracks are remaining. If true, increment the track counter
and proceed to the top of the loop.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-50 Update:  12/31/97

DRAFT

FIGURE 2.15-9.  OBRDSC Functional Flow Diagram (Page 1 of 2).

START

1
Time to Look at Scope = 1 Second

Loop Through Max Tracks in Track Bank

2
Valid
Track

?

C

A

3
Get Radar Track from

Memory
(RDRGTT)

4
Range

Information
Available

?

5
Set Distance to Radar

Cell = 1

6
Calculate Distance to Radar Cell

7
Distance

to Radar Cell
> Scope

Limit
?

A

8
Determine Last Hit Time, Mode

and Antenna Number
(RRTKLH)

9
Time

Since Last Update
Valid

?

10
Abort Run
(NABORT)

B

Yes

No

Yes

No

Yes

No

Yes

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-51 BRAWLER

DRAFT

FIGURE 2.15-9.  OBRDSC Functional Flow Diagram (Page 2 of 2).

B

11
Display

Time Limit
Exceeded

?

12
Radar Mode

is TWS or SPOT
and

Track not
Established

?

13
Radar Mode

is ESA
and

Track not
Established

?

14
Increment time Used

by 0.1 sec.

15
Track

Updated Since
Last Radar Search

?

16
Process Track

(MKLSOB)

17
Tracks

Remaining
?

RETURN

No

No

No

Yes

No

Yes

Yes

Yes

No

C Yes

A



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-52 Update:  12/31/97

DRAFT

Subroutine RRSNSD

Subroutine rrsnsd generates radar observations for the pilot. Figure 2.15-10 is the
functional flow diagram that describes the logic used to implement rrsnsd.  The blocks are
numbered for ease of reference in the following discussion.

Block 1. Test if the number of observed entities is zero. If true, return to calling routine,
otherwise continue processing the observation data.

Blocks 2-23 are in a loop over the number of observed entities.

Block 2. Subroutine rdrgtt is called to obtain the radar track data from memory for the
observed aircraft.

Block 3. Subroutine prjacc is called to make a constant acceleration projection of the
observed track’s position and velocity from the last update time to the current simulation
time.

Block 4. Subroutine vecinc is called to calculate an incremental position for the
conscious pilot’s aircraft.  This is done so that the later call to rdrbem will not put the
conscious pilot’s own aircraft on the list of observed targets.

Block 5. Subroutine vsub is called to subtract the conscious pilot’s incremental position
(Block 4) from the target position to generate a line of sight along the radar beam.

Block 6. Subroutine rdrbem is called to make a list of all aircraft within a radar beam and
a list of stand off jammers (SOJ) that are jamming into the beam.  The starting point for the
beam is the incremental position computed in Block 4, and the direction is the line of sight
computed in Block 5.  The beam width in azimuth and elevation are characteristics of the
current mode of the radar, and are read in during initialization.

Block 7. Test if the observed entity is an aircraft. If true, process the  observation for an
aircraft (Blocks 8-15). Otherwise, assume the entity is a missile and process the observation
for a missile (Blocks 16-22).

Blocks 8-15 are executed when the observed entity is an aircraft.

Block 8. Test if the observed aircraft is in a track that is being jammed (either by aircraft
in the track or by a SOJ). If true, go to block 9.  If false, go to Block 10.

Block 9. Set the detection method = 5 (jammed radar).

Block 10. Set the detection method = 2 (clear radar).

Block 11. Subroutine radobs is called to compute the observables for this observation (this
routine is detailed below).  The time of the radar track and the target tail number are also
recorded.

Block 12. Test if the observed aircraft is attempting to jam and the submodel flag
‘ouemod(4)’ is set.  This flag allows the pilot to type an aircraft if it is attempting to jam
his radar, but he still detects it. If true, go to Block 13.  Otherwise, go to Block 14.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-53 BRAWLER

DRAFT

Block 13. Typing of observed aircraft is allowed.  Record the aircraft type and the fact that
the typing was accomplished via electronic means as part of the observation data.

Block 14. Typing of observed aircraft is not made. Record that no type information was
obtained and that the quality of the observation is “bvr_id_md”, indicating that no
identifying information is contained in this observation.

Block 15. The aircraft is recorded as being observed as alive.

Blocks 16-22 are executed when the observed entity is a missile.

Block 16. Subroutine mxref is called to get the missile slot number from the missile
identification number.

Block 17. Test if the missile slot number contains a valid missile. If not, process the next
observed entity (Block 18). Otherwise, continue to Block 19.

Block 18. Increment the loop counter and proceed to the top of the loop to process the next
observed entity.

Block 19. Test if the observed missile is in a jammed track. If true, go to Block 20.  If false,
go to Block 21.

Block 20. Set the detection method = 5 (jammed radar detection).

Block 21. Set the detection method = 2 (clear radar).

Block 22. Subroutine radobs is called to compute the observables for this observation.
The time, missile ID number, and fact that the missile is still “alive” (not exploded) are also
recorded as part of the observation data.

Block 23. Test if there are any more observed entities to be processed. If true, increment
the loop counter and proceed to the top of the loop to process the next observed entity.
Otherwise, return control to the calling routine.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-54 Update:  12/31/97

DRAFT

FIGURE 2.15-10.  RRSNSD Functional Flow Diagram (Page 1 of 2).

START

1
Number

of Observed
Entities = 0

?

D

Loop Through the Number of
Observed Entities

2
Get Radar Target Track Data

(RDRGTT)

3
Project Targets Position and Velocity

(Assuming Const Accleration)
(PRJACC)

4
Calculate Incremental Position

for Ownship
(VECINC)

5
Subtract Incremental Position from

Target Position
(VSUB)

6
Make List of Aircraft Within

Radar Beam
(RDRBEM)

7
Observed

Entity = Aircraft
Entity

?
8

Is Radar
Jammed

?

9
Detection

Method = 5

10
Detection Method

= 2

11
Compute Radar Observables

(RADOBS)

12
Is OBS

A/C in Emitting
SSJ Jammer Power

?

B

13
Type A/C
if Allowed

C

16
Get MSL Slot Number

(MXREF)

17
Is

Valid Missile
?

19
Is Radar
Jammed

?

21
Detection Method = 2

A

20
Detection Method = 5

18
Increment Counter

No

Yes

No

No

No

No

Yes

No

Yes

Yes

Yes

E



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-55 BRAWLER

DRAFT

FIGURE 2.15-10.  RRSNSD Functional Flow Diagram (Page 2 of 2).

Subroutine RADOBS

Subroutine radobs computes radar observables, errors, and cross correlation matrices.
Figure 2.15-11 is the functional flow diagram that describes the logic used to implement
radobs.  The blocks are numbered for ease of reference in the following discussion.

Block 1. If the perfect information flag is set to true, go to Block 2.  Otherwise, go to
Block 3.

Block 2. The observation pointer is set to null, indicating that no observation is
generated, since perfect information is being used.   An observation is not required in this
mode because ground truth information will be used to update the pilot’s mental model.
After this, return to the calling routine.

Block 3. Subroutine rdrgtt is called to obtain the radar track data from memory for the
track to be observed.

Block 4. Subroutine rrtklh is called to determine the last radar hit time, mode and antenna
number for this track.

Block 5. Test if the mode of the last radar hit is ‘scan’ mode. If true, Blocks 9-16 are
executed.   Otherwise, Blocks 6-8 are executed.

Block 6. Set the observation type = 22, (earth centered Cartesian, position and velocity).

A B

C

E

22
Compute Radar Observables

(RADOBS)

14
No Typing

23
More Observations

?

RETURN

No

D

Yes

15
Set Alive Flag

to True



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-56 Update:  12/31/97

DRAFT

Block 7. Put the track position and velocity values into the observation.

Block 8. Copy the track cross correlation matrix into the observation cross correlation
matrix.  Continue at Block 17.

Block 9. Test if the latest observation type is “azel” (azimuth and elevation only). If true,
go to Block 10.  If false, go to Block 11.

Block 10. Populate the cross correlation matrix as a 2x2 matrix with diagonal elements of
1 degree uncertainties in azimuth and elevation.  Continue at Block 16.

Block 11. Test if  the latest observation type is “raerd” (azimuth, elevation, range and
range rate data). If true, go to Block 12.  Otherwise, go to Block 13.

Block 12. Populate the cross correlation matrix as a 4x4 matrix with diagonal elements of
1 degree uncertainty in azimuth and elevation, 500 ft uncertainty in range and 5 ft/sec
uncertainty in range rate.  Continue at Block 16.

Block 13. Test if the latest observation type is “azelrd” (azimuth, elevation and range rate
data). If true, go to Block 15.  If false, go to Block 14.

Block 14. An undefined observation type has occurred, the run is aborted and diagnostic
messages are printed.

Block 15. Populate the cross correlation matrix as a 3x3 matrix with diagonal elements of
1 degree uncertainty in azimuth and elevation and 5 ft/sec uncertainty in range rate.

Block 16. Subroutine oberr is called to add the errors to the observation.  The errors are
constructed by generating a Gaussian random variate with a mean of zero and a variance of
1 and multiplying this by the square root of the diagonal element of the cross correlation
matrix that corresponds to the observable.  This is added to the observable to generated an
errored observation.

Block 17. Subroutine olistv is called to store this observation in list memory and return a
pointer to it.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-57 BRAWLER

DRAFT

FIGURE 2.15-11.  RADOBS Functional Flow Diagram (Page 1 of 2).

START

1
Perfect

Information
Switch on

?

2
Don't Generate
Observations

3
Get Radar Track Data

From Memory
(RDRGTT)

4
Get Last Hit Time, Mode and

Antenna # for Track
(RRTKLH)

5
Mode Last
Hit = Scan

?

6
Observation Type = ECCXV

7
Put Track Data into
Observation Array

8
Populate Cross Correlation

Matrix

B

9
Latest

Observation Type
= AZEL

?

11
Latest

Observation Type
= RAERD

?

D

10
Populate Cross Correlation

Diagonal Elements for 2 X 2 Matrix

12
Populate Cross Correlation

Diagonal Elements for 4 X 4 Matrix

C

C

No

Yes

Yes

No

Yes

Yes

No

No

A



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-58 Update:  12/31/97

DRAFT

FIGURE 2.15-11.  RADOBS Functional Flow Diagram (Page 2 of 2).

Subroutine MINDUP

Subroutine mindup is the executive routine for updating the mental model of the currently
conscious pilot. Figure 2.15-12 is the functional flow diagram that describes the logic used
to implement mindup.  The blocks are numbered for ease of reference in the following
discussion.

Block 1. Update the radar status and characteristics data for this aircraft by calling
subroutines grdrs and grdrc.

Block 2. Test if this consciousness event was triggered by the receipt of a radio message.
If true, get messages about other aircraft and missiles (Blocks 3-5).  Otherwise, skip to
Block 6.

Block 3. Subroutine inicmm is called to set up for message receipts.

Block 4. Subroutine rcvobs is called to receive messages about other aircraft.

Block 5. Subroutine rcvmob is called to receive messages about missiles.

D

13
Latest

Observation Type
= AZELRD

?

15
Populate Cross Correlation Diagonal

Elements as 3 X 3 Matrix

16
Add Errors to Perfect

Observation
(OBERR)

17
Create Pointer to

Observation
(OLISTV)

RETURN

14
ABORT

C

B

A

Yes

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-59 BRAWLER

DRAFT

Block 6. Subroutine ccself is called to update the state vector information for the
conscious pilot’s own aircraft. This is basically a transfer of information from the common
block that stores the external status of all aircraft (extst) into the pilot’s mental model.  

Block 7. Subroutine msl2x0 is called to process all missiles for which observation
information is present. This routine is analogous to cc2x0 which is detailed below.

Block 8. Subroutine cc2x0 is called to process all aircraft for which observation
information is present. This routine is detailed below.

Block 9. Test if this consciousness event is a communications receipt event. If true, go to
Block 10.  If not, go to Block 11.

Block 10. Subroutine rcv_intent is called to process any intent to shoot messages. If
another pilot is going to shoot at the currently conscious pilot’s primary target, a
consideration to changing targets is made by requesting a pilot posture decision, which will
force a call to select a weapon/target pair (selwpn).

Block 11. Subroutine astyp is called in an attempt to determine the ‘type’ (hostile/friendly)
of an aircraft based on the knowledge of the types of other members of that flight.

Block 12. Subroutine asown is called to attempt to determine the ownership of the missiles
that the pilot knows about, if possible. If detected early enough, the missile may be linked
to the firing aircraft by taking into account the geometry and proximity of other entities.

Block 13. Subroutine astgt is called to attempt to determine who the targets are of all of
the missiles that the pilot knows about.  The pilot already knows the targets of his own
missiles, and he will received radio messages containing this information for missiles fired
by his flightmates.  For other missiles, he will attempt to project current positions and
velocities to try to assess each missile’s most likely target.

Block 14. Test the value of a user set mode flag (ouemod(6)).  If true, go to Block 15.  If
not, go to Block 16.

Block 15. Subroutine astyp2 is called to allow typing of an aircraft as hostile if it can be
determined that it has fired on a friendly aircraft.

Block 16. Test if this consciousness event is a preplanted mission change event. If true, go
to Block 17.  If not, jump to Block 22.

Block 17. Process preplanted events (i.e. read new orders).

Block 18. Check event stack and determine if preplanted events need replanting at a future
time.  If so, reschedule the event by calling subroutine plants.

Block 19. Test if the mission has changed. If true, go to Block 20.  If not, go to Block 21.

Block 20. Set flag to initiate a flight posture level decision. This is done if the mission has
changed. This is the highest level in the decision hierarchy and determines the general
course of action for the flight.  Continue at Block 24.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-60 Update:  12/31/97

DRAFT

Block 21. Set flag to initiate a flight tactics level decision, which is the second highest
level decision. Continue at Block 24.

Block 22. Test if this consciousness event is a communications receipt event. If true,
process orders received from the flight leader or GCI (Block 23).  If not, go to Block 24.

Block 23. Subroutine rcv_orders is called to process any incoming orders from
GCI/AWACS controllers or the flight leader.

Block 24. Subroutine mmordr is called to reorganize the pilot’s mental model if necessary.
Reorganization constitutes sorting the highest valued aircraft to the top of the list of aircraft
to be taken under detailed consideration

Block 25. Test if the aircraft is damaged. This flag can only be set through production
rules.  If true, go to Block 26.  If not, go to Block 27.

Block 26. The aircraft has been determined to be damaged, therefore, set the
aggressiveness factor to 0.5.  

Block 27. Test if it is time for a major update of the pilot’s mental model. If it is, go to
Block 28.  If not, go to Block 29.  A major update will be called if the time since the last
major update is greater than the maximum decision interval or if the major update request
flag was set due to a change in mission (Block 20) or the pilot made an observation
containing significant new information.

Block 28. Subroutine majud is called to perform a complete situation assessment update.
Some items included in this assessment are:

Update physical relationship variables
Ask for new decisions at all levels
Assess the likelihood that each friendly has been detected by the hostiles
Calculate 1v1 self engagement measures
Calculate expected valued killed
Compute effective and situational values
Compile high utility attack and evade lists

Block 29. Subroutine minud is called to perform a partial situation assessment. Minud
updates self engagement measures (SEM) for self versus hostiles and hostiles versus self
only. It also recomputes the utility of engagements using new SEMs.

Block 30. Subroutines preobs, premob, and prereq are called to prepare outgoing
messages for flightmates. Preobs prepares the aircraft observations made by the conscious
pilot. Premob prepares the missile observations made by the conscious pilot. Prereq
prepares a message requesting information about unobserved aircraft that the conscious
pilot is sufficiently worried about to ask for an update on.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-61 BRAWLER

DRAFT

FIGURE 2.15-12.  MINDUP Functional Flow Diagram (Page 1 of 3).

START

1
Make Radar Status and Characteristics

Data Current for this Aircraft
(GRDRS, GRDRC)

2
CE Type is

Communications
Receipt
Event

?

3
Set up for Message

Receipts
(INICMM)

4
Receive Messages About

Other A/C
(RCVOBS)

5
Receive Messages About

Missiles
(RCVMOB)

6
Update State Vector Information

for Conscious Pilot
(CCSELF)

7
Process all Missiles for Which Info

is Present
(MSL2X0)

8
Process all Aircraft for Which Info

is Present
(CC2X0)

9
CE Type is

Comm Receipt
Event

?

10
Process Intent to Shoot

Messages
(RCV_INTENT)

11
Perform Inferred Typing

(ASTYP)

12
Generate Missile Owner Assessments

(ASOWN)

13
Assess Missile Targets

(ASTGT)

A

Yes

No

Yes

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-62 Update:  12/31/97

DRAFT

FIGURE 2.15-12.  MINDUP Functional Flow Diagram (Page 2 of 3).

A

14
OUEMOD (6)

?

15
Type Hostiles Based on

Their Action
(ASTYP2)

16
CE

Type = 4
?

17
Process Preplanted

Events (Orders Change)

18
Replants Events if

Required
(PLANTS)

19
Mission
Changed

?

20
Set Flag to

make Flight Posture
Level Decision

(ASKLEV)

21
Set Flag to Make Flight
Tactics Level Decision

(ASKLEV)

23
Receive Orders

from Flight Leader
or GCI

(RCV_ORDERS)

24
Reorganize Pilot's Mental

Model if Necessary
(MMORDR)

25
A/C

Damaged
?

26
Lower Aggressiveness

Factor

27
Time

for Update of
High Level

Mental Model
?

28
Major Update

(MAJUD)

29
Minor Update

(MINUD)

B

Yes

No

Yes

No

Yes

22
CE Type

= 2
?

No

No

No

Yes

Yes

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-63 BRAWLER

DRAFT

FIGURE 2.15-12.  MINDUP Functional Flow Diagram (Page 3 of 3).

Subroutine CC2X0

Subroutine cc2x0 is the top level routine for merging aircraft observations into the pilot’s
mental model. Figure 2.15-13 is the functional flow diagram that describes the logic used
to implement cc2x0.  The blocks are numbered for ease of reference in the following
discussion.

Block 1. Initialize variables for diagnostic information, the altered aircraft list, number
of, observations with positional information.  Also, save the IDs and relationships of all of
the aircraft known to the pilot before this routine executes.  This will be compared with the
same information after observations have been processed in order to help determine if a
significant change has occurred in the pilot’s situation awareness.

Blocks 2-29 are in a loop over the number of observations.

Block 2. Subroutine cc2x1 is called to correlate the observation with targets in the mental
model to determine if the observation is worth processing (Subroutine cc2x1 is detailed
below).

Block 3. Test if the observation is worth processing. If not, then jump to Block 27.
Otherwise, continue.

Block 4. Test if the pilot can determine that the aircraft under consideration is dead. The
pilot will be able to infer this if the dead aircraft has been tracked for more than 5 seconds
after it is killed.  He will also know that it is dead if the perfect information switch is set to
true and the aircraft is on the ground. If determined to be dead, then set the aircraft alive
flag to false (Block 5).  Otherwise, set it to the value of the variable daaliv, which is part of
the observation data.

Block 5. The aircraft alive flag is set to false because the pilot was able to determine that
the aircraft under consideration is dead.

Block 6. Test if this is the first observation of this aircraft. If true, go to Block 7.  If not,
jump to Block 13.

B

30
Prepare Messages

(PREOBS, PREMOB,
PREREQ)

RETURN



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-64 Update:  12/31/97

DRAFT

Block 7. Test if the aircraft is dead or was previously observed as dead. If true, then
delete the observation pointer from memory (jump to Block 27), increment the loop counter
and proceed to the top of the loop to process the next aircraft. If false, continue.

Block 8. Subroutine cc2x3 is called to add this observation to the conscious pilot’s
mental model.

Block 9. Set the ‘best information’ variable for this aircraft.  This records the most
accurate or complete information source that is contributing to this track.

Block 10. Set flag to force a major update of the conscious pilot’s mental model because
a new detection is a significant piece of information.

Block 11. Subroutine addmsg is called to add the newly detected aircraft to the outgoing
message list unless it is in the conscious pilot’s own flight or is on the same mission or if
this initial detection is itself the result of a radio message received from someone else.

Block 12. Subroutine adlist is called to add the aircraft to the altered aircraft list.  This is
a list of all aircraft in the pilot’s mental model about which his knowledge has changed
significantly during this consciousness event.

Blocks 13-26 are executed when the observed aircraft is already known to the conscious
pilot.

Block 13. Test if the pilot can observe that the aircraft is dead. If true, execute blocks 14-
16 to remove it from the conscious pilot’s mental model. If false, execute blocks 17-25 to
process the observation.

Block 14. Subroutine addmsg is called to inform others of the observed aircraft’s death. A
message will be added to the outgoing message list.

Block 15. Subroutine mremac is called to remove the observed aircraft from the conscious
pilot’s mental model and to add it to the list of aircraft that he believes to be dead.

Block 16. Subroutine listd is called to free the list memory space holding the observation.
Jump to Block 27.

Block 17. Subroutine cc2x2 is called to update the pilot’s perception of the aircraft’s state
with the new observation.

Block 18. Test if the observed aircraft is newly identified and friendly. If true, go to
Block 19.  If not, skip to Block 20.

Block 19. Set flag to request a major mental model update and a new pilot posture decision
(unidentified aircraft are assumed to be hostile, so whenever one is newly identified as
friendly, the pilot needs to reconsider his weapon/target decisions to prevent possible
fratricide).

Block 20. Reset the ‘best information’ switch for this aircraft. If the method of observation
for this observation is better than the previous best method of observation, then replace the
best method of observation with the method of observation for this track.  This keeps track



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-65 BRAWLER

DRAFT

of the best information source that is contributing to each of the tracks in the pilot’s mental
model.

Block 21. Test if new identification information resulted from an on board detection and
the newly identified (not newly observed, e.g. may now have visual identification instead
of radar identification) aircraft is not in my flight. If true, send an observation message
(Block 22).  If not, skip to Block 23.

Block 22. Subroutine addmsg is called to add a newly identified aircraft message to the
outgoing message list.

Block 23. Test if a message request concerning the observed aircraft has been received
from another friendly aircraft. If true, send an observation message (Block 24).

Block 24. Subroutine addmsg is called to add this aircraft to the list of outgoing messages,
if it isn’t already there.

Block 25. Test if a significant change to the pilot’s knowledge of the observed aircraft has
occurred. If true, go to Block 26.  If not, jump to Block 27.

Block 26. Subroutine adlist is called to add the observed aircraft to the altered aircraft list.

Block 27. Test if the observation pointer is not zero.  If true, go to Block 28.  If not, go to
Block 29.

Block 28. Subroutine listd is called to delete the observation from memory.

Block 29. Test if there are any more observations remaining to be processed. If true, go
back to Block 2. Otherwise, continue at Block 30.

Block 30. Subroutine cc2_gcirng is called to check for range data from GCI controllers
and to add this to the pilot’s mental model.

Block 31. Subroutine cc2x4 is called to update all aircraft in the mental model to the
current time, whether they were observed or not.

Block 32. Zero any elements of the mental model cross reference arrays for aircraft that
have been removed from the mental model.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-66 Update:  12/31/97

DRAFT

FIGURE 2.15-13.  CC2X0 Functional Flow Diagram (Page 1 of 3).

START

1
Initialize Variables

Loop Through Number of A/C for
Which New Information is Present

2
Correlate Observation with Targets

in Mental Model and Determine
if OBS is Worth Processing

(CC2X1)

3
Is

OBS Worth
Processing

?

4
Can

Pilot Determine
if A/C is Dead

?

5
Set ACALIV Flag = F

6
First

Detection of
OBS A/C

?

7
A/C Dead

?13
Can Pilot Determine if

A/C is Dead
?

17
Process Observation

(CC2X2)

8
Add to Mental

Model
(CC2 X 3)

9
Set Best Info

Source for this A/C

E

14
Inform Others of OBS

A/C's Death
(ADDMSG)

15
Remove OBS A/C from

Mental Model
(MREMAC)

16
Free List Memory Space

Holding the OBS
(LISTD)

A D

C

C

F

Yes

No

No

No

No

Yes

Yes

Yes

Yes
No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-67 BRAWLER

DRAFT

FIGURE 2.15-13.  CC2X0 Functional Flow Diagram (Page 2 of 3).

A D E

18
Newly

Identified
and

Friendly
?

19
Set Flags
for Major

MM Update

20
Reset Best Info

Source for this A/C

21
Newly

ID'd from On-Board
Detection and
A/C not in my

Flight
?

22
Send OBS
Message

(ADDMSG)

23
Received

Message Request
?

24
Send OBS
Message

(ADDMSG)

25
Significant
Info in Obs

?

26
Add to Altered

A/C List
(ADLIST)

27
OBS PTR

Not 0
?

28
Delete Observation

Data
(LISTD)

29
More
A/C

?

G

F

C

10
Set Flags to Force
Major MM Update

11
Add Appropriate OBS

to Message List
(ADDMSG)

12
Add Significant A/C

to Altered List
(ADLIST)

Yes

No

No

No

Yes

Yes

Yes

No

Yes

No

No

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-68 Update:  12/31/97

DRAFT

FIGURE 2.15-13.  CC2X0 Functional Flow Diagram (Page 3 of 3).

Subroutine CC2X1

Subroutine cc2x1 correlates observations with targets in the conscious pilot’s mental
model. It also determines whether or not it is worth continuing to process the observation
under consideration.  The observation may be discarded if it will not add any new
information beyond what is already contained in other observations made during this
consciousness event.  cc2x1 also records the reason for accepting or discarding an
observation.  The reasons can be printed out if the diagnostic print switch for this routine
is turned on.  Figure 2.15-14 is the functional flow diagram that describes the logic used to
implement cc2x1.  The blocks are numbered for ease of reference in the following
discussion.

Block 1. Subroutine match is called to determine the index of the observed aircraft in the
conscious pilot’s mental model (variable ispotd). This index is return as zero if the aircraft
is not yet in the mental model (i.e. new observation).

Block 2. Test whether a limited information detection has been made. A detection is
considered limited information if it is either an ECM, a jammed communications or an
IRST detection. If the detection is not a limited detection, then accept the detection
(Block 3) and return control to the calling routine. If the detection is a limited detection, go
to Block 4.

Block 3. A normal observation was made, accept the detection.  Set the return variable
discrd to false, set the reason to “NORMAL OBSERVATION”.  Return to the calling
routine.

G

30
Check for Range Data

from GCI
(CC2_GCIRNG)

31
Update all A/C in MM

to Current Time
(CC2 X 4)

32
Zero Cross References

for any A/C No Longer in
Mental Model

RETURN



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-69 BRAWLER

DRAFT

Block 4. Subroutine detinf is called to check all of the observations made during this
consciousness event and to return flags indicating what quality of observations have been
made.  The intent here is that if other observations already contain more information than
the limited observation being examined here, there is no reason to continue to process this
observation.  detinf will return flags indicating whether visual, radar, message, ECM, non-
ECM or inferred information is available.

Block 5. Test if visual information is available on the observed aircraft.  If so, go to
Block 6.  If not, jump to Block 7.

Block 6. Discard this ECM/IRST detection since a visual detection was also made. Set
the return variable discrd to true, the reason to “ACCOMPANYING VISUAL”, and return.

Block 7. Test if the observation under consideration is an IRST detection. If true,
continue at Block 8.  If not, jump to Block 11.

Block 8. Test if radar information is also available on the observed aircraft. If true,
discard this detection (IRST) in favor of the radar detection (Block 9). Otherwise accept the
IRST detection (Block 10).

Block 9. Discard this detection (IRST) in favor of the radar detection.  Set the return
variable discrd to true, the reason to “IRST, also RADAR”, and return.

Block 10. Accept this detection (IRST), since no better observations are available (visual
or radar).  Set the return variable discrd to false, the reason to “IRST detection”, and return.

Block 11. Test if the observed aircraft is already known to the pilot. If true, continue at
Block 12.  If not, jump to Block 15.

Block 12. Test if the detection is a jammed message detection. If true, go to Block 13.
Otherwise, the detection must be an ECM detection of a known aircraft, skip to Block 14.

Block 13. Discard this detection (jammed message about a known aircraft).  Set the return
variable discrd to true, the reason to “ECM COMM OF KNOWN AC”, and return.

Block 14. Accept this detection (ECM detection of a known aircraft).  Set the return
variable discrd to false, the reason to “ALREADY KNOWN AC”, and return.

Block 15. Test if the detection is a jammed message detection. If true, go to Block 16.
Otherwise, go to Block 17.

Block 16. Accept this detection (a jammed message detection of an unknown aircraft).  Set
the return variable discrd to false, the reason to “ECM COMM OF UNKNOWN AC”, and
return.

Block 17. Accept this detection (ECM detection of an unknown aircraft).  Set the return
variable discrd to false, the reason to “ECM OF UNKNOWN AC”, and return.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-70 Update:  12/31/97

DRAFT

FIGURE 2.15-14.  CC2X1 Functional Flow Diagram.

Subroutine CC2X3

Subroutine cc2x3 adds a newly detected aircraft to the mental model. Figure 2.15-15 is the
functional flow diagram that describes the logic used to implement cc2x3.  The blocks are
numbered for ease of reference in the following discussion.

Block 1. Test if the HRL mode switch number 5 (hrlmod(5)) is set. If true, go to Block 2.
If not, skip to Block 3.

START

1
Determine Index of OBS A/C

in MM (MATCH)

2
Limited Info
Detection

?

3
Accept Detection

(DISCRD = F)

4
Retrieve What Types of Information

are Available for OBSD A/C
(DETINF)

5
Visual

Information
Available

?

6
Discard Detection

(DISCRD = T)

7
IRST

Detection
?

11
Known

A/C
?

8
Radar
Info
Avail

?

9
Discard Detection

10
Accept Detection

A

12
Jammed
Message
Detection

?

13
Discard

Detection

14
Accept Detection

A

15
Jammed
Message
Detection

?

16
Accept Detection

17
Accept Detection

RETURN

A

Yes

No

A

Yes

ANo

No

Yes

Yes

No

No

Yes

No

No

Yes

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-71 BRAWLER

DRAFT

Block 2. Subroutine makecp is called to take checkpoints after the number of detections
has reached the predefined goal. The goal is currently set to be equal to four.

Block 3. If the number of known aircraft does not already equal or exceed the maximum
number of aircraft in the pilot’s detailed decision group (mxacmm), then the counter for the
number of aircraft in the group (nspotd) is incremented.  The counter for the total number
of aircraft in the mental model (ninmm) is also incremented.

Block 4. The observed aircraft is added to the mental model cross reference arrays iacidx,
iacidt, mmindx, and mmindt.

Block 5. Subroutine prjacc is called to project the position and velocity of the conscious
pilot’s aircraft to the time of the observation.

Block 6. Subroutine prjacc is called to project the position and velocity of the target
aircraft to the time of the observation.

Block 7. The aircraft type and type quality are copied from the observation data to the
pilot’s mental model.

Block 8. If the aircraft is in the pilot’s detailed consideration group, logical function irhas
is called to determine if the detected aircraft poses an IR missile threat.  irhas works as
follows:  if the type of the detected aircraft is unknown, IR capability is assumed to be true.
If the type of the aircraft is known, IR capability is true if it is carrying any missiles with
IR seekers, false otherwise.

Block 9. The newly detected aircraft’s flight and element are recorded in the conscious
pilot’s mental model.

Block 10. If the newly detected aircraft is in the conscious pilot’s detailed consideration
group and is in his flight or element, record that information in his mental model.

Block 11. Subroutine getrel is called to assess the relationship of the new aircraft to the
conscious pilot if the new aircraft is friendly. If the new aircraft is confirmed as hostile, the
relationship is set to ‘hostile but not currently engaged with self’. Otherwise, the
relationship is set to unknown.

Block 12. The intrinsic value and combat effectiveness of the observed aircraft are
recorded in the pilot’s mental model.  The same values are used whether the pilot knows
the type of the aircraft or not.

Block 13. Subroutine gtypd is called fetch characteristics data for the observed aircraft.

Block 14. Record the method (sensor) used to make the detection.

Block 15. If the newly detected aircraft was visually sighted, record the time of first visual
sighting.

Block 16. Record the observed afterburner state (on, off, unknown) of the newly detected
aircraft.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-72 Update:  12/31/97

DRAFT

Block 17. Subroutine gtypd is called to get information on external stores of the newly
detected aircraft if they can be visually observed.

Block 18. Real function dist is called to calculate range from the conscious pilot’s aircraft
to the newly detected aircraft.

Block 19. Test if the perfect information flag is set. If set to true, go to Block 20.
Otherwise, go to Block 22.

Block 20. Subroutine m3perf is called to use ground truth to update the pilot’s knowledge
of the observed aircraft’s position, velocity, and acceleration.

Block 21. The mental model variables for time of observation (tsight = current simulation
time),  positional information available (posinf = true) and target state vector time (svtimx
= current simulation time) are set.

Blocks 22-27 are executed if the perfect information flag is not set true.

Block 22. Test if positional information is available with this observation. If true, go to
Block 24.  If not, go to Block 23.

Block 23. Subroutine nabort is called to terminate the run and print diagnostic messages.

Block 24. Subroutine inlsvd is called to retrieve the observation data.

Block 25. Subroutine tkupi is called to initialize the state vector of the tracker for the first
detection. Inputs are taken from the observation data. Mental model values for aircraft
position, velocity and acceleration are then taken from the newly created state vector.

Block 26. Test if ground controller intercept (GCI) information is available and is not too
old. If true, add range information to the conscious pilot’s mental model (Block 27).

Block 27. Subroutine gci_r_info is called to add range information to the conscious pilot’s
mental model. This information is accepted only if it offers an improvement in the
information already taken from the observation data. If accepted, a Kalman filter is
employed to fold in the new range data to the mental model’s state vector.

Block 28. Initialization of miscellaneous mind variables is completed before returning
control to the calling routine.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-73 BRAWLER

DRAFT

FIGURE 2.15-15.  CC2X3 Functional Flow Diagram (Page 1 of 2).

START

1
HRL Mode
Switch 5

= T
?

2
Take Checkprint After 4

Detections
(MAKECP)

3
Increment Aircraft

Counters

4
Set Array Indices for

Cross Reference

5
Project Ownship to time of

Sighting
(PRJACC)

6
Project New Aircraft to time

of Sighting
(PRJACC)

7
Record Type and Type Quality Info from

Observation

8
Assess New Aircraft's IR

Threat Capability

9
Record New Aircraft's Flight and Element in

Mental Model

10
Update List of Aircraft in
Conscious Pilot's Flight

11
Assess Relationship of New

Aircraft
(GETREL)

12
Assess Value and Combat Effectiveness

of New A/C
(GTYPDP)

13
Get Type Information

(GTYPD)

A

No

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-74 Update:  12/31/97

DRAFT

FIGURE 2.15-15.  CC2X3 Functional Flow Diagram (Page 2 of 2).

A

14
Record Information Source

15
Record Time of First Visual Sighting

16
Set Afterburner State

17
Get Information on Stores

(GTYPD)

18
Calculate Range from Conscious Pilot

to New Aircraft
(DIST)

19
Perfect

Information
Flag Set

?

20
Place Perfect Information

in Tracking Arrays
(M3PERF)

21
Update Sighting Variables

22
Positional

Information
Available

?

23
Abort Run
NABORT

24
Retrieve Observation for this

A/C
(INLSVD)

25
Load Mental Model with the

Initial State
(TKUPI)

26
GCI

Info Avail and
Not too Old

?

28
Complete Mind Variable

Initialization

RETURN

27
Add Range Only Info to

Mental Model
(GCI_R_INFO)

No

Yes

No

Yes

No

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-75 BRAWLER

DRAFT

Subroutine MREMAC

Subroutine mremac deletes an aircraft from the current mental model. Figure 2.15-16 is the
functional flow diagram that describes the logic used to implement mremac.  The blocks
are numbered for ease of reference in the following discussion.

Block 1. Set flag to call a major mental model update.

Block 2. Eliminate acquired missile considerations.  If the aircraft being deleted is on the
pilot’s list of aircraft under attack by command guided missiles that have acquired their
targets, remove it.

Block 3. Eliminate missile support considerations.  If the aircraft being deleted is on the
pilot’s list of aircraft under attack by missiles requiring support (semi-active missiles or
command guided missiles that have not yet acquired their targets), remove it.

Block 4. Subroutine anytrk is called to return any tracks that the conscious pilot has on
the aircraft being removed.

Block 5. Test if the conscious pilot has an STT radar track on the aircraft. If true, go to
Block 6.  Otherwise, jump to Block 7.

Block 6. Subroutine asklev is called to force a new decision at the pilot posture level,
since the target that the conscious pilot had an STT lock on is now being deleted.

Block 7. Place the aircraft on the dead aircraft list.  This involves adding the aircraft’s ID
to the list of dead aircraft and recording the time that it was observed as dead and its
relationship to the conscious pilot.

Block 8. Test if the dead aircraft was friendly or hostile. If hostile, go to Block 9.  If
friendly, go to Block 10.

Block 9. Since a hostile was just killed, increase the conscious pilot’s aggressiveness
factor and the overall scale multiplier for offensive values by 25%.

Block 10. Since a friendly was just killed, the aggressiveness factor and offensive
multiplier might be reduced to reflect the loss of aggressiveness when a flight member dies.
Currently no adjustments are made for this case.

Block 11. Subroutine minfer is called to plant a consciousness event to allow for an
inferred detection of the hostile that just killed this friendly.

Block 12. Test if the dead aircraft was the conscious pilot’s formation (flight or element)
leader. If true, promote another pilot (possibly the conscious pilot) in the flight to be flight
leader (Blocks 13-25).  If not, jump to Block 26.

Blocks 13-25 are executed to determine promotions if the aircraft killed was the conscious
pilot’s formation leader. There are three possible ranks in the command hierarchy;
wingman, element leader and flight leader. The lowest indexed aircraft in an element is the
element leader and the lowest indexed element leader is the flight leader, making him the
lowest indexed live aircraft in the flight. 



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-76 Update:  12/31/97

DRAFT

Block 13. Test if the conscious pilot is a wingman. For both paths, true or false, continue
to determine who should be the flight leader. At this point, if the conscious pilot is not a
wingman, he must be an element leader (there are only three assignments possible:
wingman, element leader, flight leader, and if he were already the flight leader, we
wouldn’t be here). For an element leader, go to Block 14.  For a wingman, go to Block 21.

Block 14. Find the lowest indexed aircraft in the flight, the lowest indexed element in the
flight and the lowest indexed aircraft in the conscious pilot’s element. This is done by
looping over the aircraft in the conscious pilot’s mental model and comparing indices with
the current lowest indexed aircraft, replacing the current lowest index if the compared
index is lower.

Block 15. Test if the conscious pilot has the lowest index in his element. If true, he should
be promoted to at least element leader (Blocks 16-19). If false, the lowest indexed aircraft
in the element is promoted to element leader (Block 20).

Block 16. Test if the conscious pilot’s element is the lowest indexed element in the flight.
If true, the conscious pilot is the lowest indexed aircraft in the lowest indexed element and
should be promoted to flight leader (Block 17). If false, the conscious pilot is still the lowest
indexed aircraft in his element and should be promoted to element leader, with the lowest
indexed aircraft in the flight being promoted to flight leader (Blocks 18-19).

Block 17. The conscious pilot is promoted to flight leader. He is the lowest indexed
aircraft in the lowest indexed element. Continue at Block 26.

Block 18. The conscious pilot is promoted to element leader. He is the lowest indexed
aircraft in his element.

Block 19. The lowest indexed aircraft in the flight is promoted to flight leader.  Continue
at Block 26.

Block 20. The lowest indexed aircraft in the element is promoted to element leader.
Continue at Block 26.

Block 21. Test if the conscious pilot is an element leader. This is a consistency check.  If
we reach this block, the conscious pilot must be an element leader (since the flight leader
is in the dead aircraft and the conscious pilot is not a wingman, he must be an element
leader). If false, go to Block 22.  Otherwise, go to Block 23.

Block 22. Subroutine nabort is called to terminate the run and print diagnostic messages
because the aircraft’s role is not flight leader, element leader, or wingman. 

Block 23. Test if the conscious pilot is the lowest indexed aircraft in the flight. If true, the
conscious pilot is promoted to flight leader (Block 25). If false, the lowest indexed aircraft
in the flight is promoted to flight leader (Block 24).

Block 24. The lowest indexed aircraft in the flight is promoted to flight leader.

Block 25. The conscious pilot is promoted to flight leader.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-77 BRAWLER

DRAFT

Blocks 26-36 remove the dead aircraft from the conscious pilot’s target lists, if it was on
them. Memory variables are also cleared of the knowledge of the dead aircraft.

Block 26. Subroutine asstgt is called to check the target assignment given to the conscious
pilot by his flight leader. 

Block 27. Test if the dead aircraft was the conscious pilot’s assigned target. If true, go to
Block 28.  If not, go to Block 29.

Block 28. The orders changed flag is set to true for the conscious pilot. This will force a
major update and cause the pilot to reconsider his weapon and target decisions.

Block 29. Test if the dead aircraft was the conscious pilot’s selected target. If true, go to
Block 30.  If not, go to Block 32.

Block 30. Subroutine gfcsta is called to retrieve the fire control status for the conscious
pilot.

Block 31. The fire control variables for selected missile, selected target id, best target
index and missile mode are set to zero for the conscious pilot. These values will be reset
when the conscious pilot selects another target in a future consciousness event.

Block 32. If other friendlies had communicated an intent to fire on the dead aircraft, clear
this information from the pilot’s mental model.

Block 33. If the dead aircraft was not the last aircraft in the mental model, then swap the
mental models of the dead aircraft with that of the last one in the mental model. By doing
this we effectively remove the dead aircraft from the /mind3/ common block arrays by
decrementing the number of aircraft in the mental model.

Block 34. Reset values in the /mind4/ common blocks that pertain to the dead aircraft.

Block 35. Reset the number of aircraft in the mental model and the number of detected
aircraft variables to account for the dead aircraft being removed.

Block 36. Subroutine recfel is called to reorder the flight and element lists for the
conscious pilot’s flight and element in case the dead aircraft was in his element and/or
flight.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-78 Update:  12/31/97

DRAFT

FIGURE 2.15-16.  MREMAC Functional Flow Diagram (Page 1 of 3).

START

1
Set Flag to Call Major
Mental Model Update

2
Eliminate Acquired Target

Consideration

3
Eliminate BVR Target

Consideration

4
Determine if Have Track

or TGT
(ANYTRK)

5
Have STT

Track
?

6
Force New Decision on

Pilot Posture Level
(ASKLEV)

7
Place Aircraft on Dead

A/C List

8
Dead

A/C Friendly
?

10
Adjust Aggresiveness Factors

11
Plant a Conciousness Event
to Allow Inference of Hostile

(MINFER)

12
Dead

A/C my Formation
Leader

?

9
Increase Aggresiveness

Factors

13
I

Am
Wing Man

?

14
Find Lowest A/C Index

in my Element and Flight

B C D B

No

Yes

Yes

Yes

Yes

No

No

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-79 BRAWLER

DRAFT

FIGURE 2.15-16.  MREMAC Functional Flow Diagram (Page 2 of 3).

C D

15
Am I

Lowest A/C
Index in

My
Element

?

17
I am Promoted
to FLT Leader

16
My

Element the
Lowest Index

in FLT
?

18
I am Promoted

to Element Leader

19
Lowest Indexed
A/C in Flight is

Promoted to Flight
Leader

20
Lowest A/C is Promoted to

Formation Leader

21
Am I

Element
Leader

?

23
Am I

Lowest Indexed
A/C in Flight

?

22
NABORT, Invalid Job

24
Lowest Indexed A/C in
Flight is Promoted to

Flight Leader

25
I am Promoted to

Flight Leader

26
Check my TGT Assignment

(ASSTGT)

27
Dead A/C

My Assigned
TGT

?

28
Set Orders Change Flag

29
Dead A/C

My Selected
TGT

?

30
Get Fire Control

Status
(GFCSTA)

31
Clear Target Values

32
Clear Intent to Fire by

Other Friendlies

E

Yes

Yes

No

No

Yes

Yes No

B

No

No

Yes

Yes

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-80 Update:  12/31/97

DRAFT

FIGURE 2.15-16.  MREMAC Functional Flow Diagram (Page 3 of 3).

Subroutine CC2X2

Subroutine cc2x2 updates the conscious pilot’s perception of previously known aircraft
with new information contained in an observation made during this consciousness event.
Figure 2.15-17 is the functional flow diagram that describes the logic used to implement
cc2x2.  The blocks are numbered for ease of reference in the following discussion.

Block 1. Test if the perfect information switch is set. If set to true, go to Block 2.
Otherwise, jump to Block 3.

Block 2. The time of the observation is reset to the current time when using perfect
information. When running in perfect information mode, the mental model track will be
updated to the current time with ground truth information by subroutine m3perf.

Block 3. Subroutine vecinc is called to calculate the position of the observed aircraft at
the time of the observation.

Block 4. Subroutine vecinc is called again to calculate the position of the conscious
pilot’s aircraft at the time of the observation.

Block 5. Real function dist is called to calculate the range between the conscious pilot’s
aircraft and the observed aircraft.

In the following blocks, aircraft ‘type’ refers a type of airframe (e.g. F15, SU27). The ‘type
quality’ refers to how well the target must be identified for firing constraints.  This
requirement is set by the user.  A type quality of visual_id_md (the highest, = 4) requires
that a visual ID must be made before the pilot may fire. Similarly, a type quality of

E

33
Swap Mental Models of Dead

A/C with A/C Last on List
(SWAPMM)

34
Reset Values in Common

Blocks

35
Reset Number in MM

and Number Detected Variables

36
Reorder Flight and Element

Lists (My Flight and my Element)
(RECFEL)

RETURN



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-81 BRAWLER

DRAFT

c2_id_md (next highest, = 3) requires that a command and control confirmation be issued
before the pilot can fire (or a visual ID, since visual is a higher quality, 4 vs. 3).

Block 6. Test if the observation of aircraft type should be accepted. If true, go to Block 7.
If not, go to Block 11.  The test is a comparison of the type quality of the observation with
the type quality of the pilot’s current knowledge.  If the quality of the observation is higher,
use it.  If they are the same, then if the observation contains typing information, use it.
Otherwise, do not use the typing information in the observation.

Block 7. Save the type quality of this observation.

Block 8. Test if the pilot’s knowledge of aircraft type has changed (observation was of
equal or better quality and contained actual type information). If the type information is
new, go to Block 9.  If not, go to Block 18.

Block 9. Set the flag indicating that the observed aircraft’s type information has changed.

Block 10. Set the observed aircraft’s type in the pilot’s mind to the aircraft type from the
new observation.

Block 11. Test if the observed aircraft is on the same side as the conscious pilot. If true,
establish the relationship between the conscious pilot and the observed aircraft (Blocks 12-
13). Otherwise set the relationship to hostile or unknown (Blocks 14-17). Valid
relationships are:

1. unknown
2. member of my element
3. member of my flight
4. friendly
5. hostile, not engaged with conscious pilot
6. hostile, engaged with conscious pilot

Block 12. Set the relationship established flag to true.

Block 13. Subroutine getrel is called to establish the relationship (see Block 11 for valid
relationships).

Block 14. For hostiles, test if the type quality is greater than the required identification
mode. If true, set relationship to hostile, not engaged with self (Blocks 15-16). If false, set
to unknown (Block 17). Identification modes are:

1. bvr_id_md  can shoot at unknowns
2. electronic_id_md can shoot with any ID method
3. c2_id_md can shoot with command and control confirmation
4. visual_id_md can only shoot with visual identification

The purpose of this is that the pilot will not definitively flag another aircraft as hostile (and
therefore open to attack) until he has a high enough quality identification to satisfy the rules
of engagement for this scenario.

Block 15. Set the relationship established flag to true.

Block 16. Set relationship between the conscious pilot and the observed aircraft to hostile,
not engaged with self.

Block 17. Set relationship between conscious pilot and observed aircraft to unknown.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-82 Update:  12/31/97

DRAFT

Block 18. Test if the observed aircraft was newly typed and is in the detailed consideration
group. If true, request a major mental model update for the conscious pilot (Blocks 19-21).

Block 19. Logical function irhas is called to determine if the conscious pilot perceives that
the observed aircraft has IR missile capability.

Block 20. Set the ‘significant information’ flag equal to true, indicating that a significant
change has occurred in the pilot’s situation perception due to this observation. This will
trigger a message to be sent by the conscious pilot and place the observed aircraft on the
altered aircraft list (see subroutine cc2x0).

Block 21. Request a major mental model update for the conscious pilot.

Block 22. If this observation represents a better source of information than the current best
source, then update the variable that stores the best source of information available.

Block 23. Test whether the observation contains positional information on the observed
aircraft. If true, continue processing the observation data. Otherwise, return control to the
calling routine.

Block 24. Test if a visual detection was made. If true, go to Block 25.

Block 25. Set the time of first visual detection if not previously set.

Block 26. Test if the observed aircraft’s afterburner state can be determined.  If true, go to
Block 27.  Otherwise, skip to Block 28.

Block 27. Set the observed afterburner state in the mental model of the conscious pilot (on,
off or unknown).

Block 28. Test if stores information can be discerned from the observation. If true, go to
Block 29.  If not, go to Block 32.

Block 29. Test if stores can be identified.  If yes, go to Block 30.  If no, go to Block 31.

Block 30. Set in the stores identification flag for this aircraft to 2, indicating that the pilot
can identify the type and number of stores on the aircraft.

Block 31. Set the stores identification flag for this aircraft to the larger of 1 and it’s current
value.  A value of 1 indicates that stores could be seen but not identified.

Block 32. Subroutine tkupmm is called to update the conscious pilot’s mental model
regarding the physical state of the detected aircraft. Tkupmm calls tkup, which takes a state
vector and an observation and passes them through a Kalman filter to produce an updated
state vector.

Block 33. Test if the conscious pilot estimates that the detected aircraft’s acceleration is
greater than 1G.  If true, go to Block 34.  If not, go to Block 35.

Block 34. The significant information flag is set to true.  This cause the observed aircraft
to be added to the altered aircraft list (see subroutine cc2x0). Entries on the altered aircraft
list will help determine if a major situational update is required.

Block 35. The observation times are reset. The generic observation time obstim is set to
the detection time. The visual (seet) and radar (radart) observation times are set if the
detection was made by visual or radar means respectively.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-83 BRAWLER

DRAFT

FIGURE 2.15-17.  CC2X2 Functional Flow Diagram (Page 1 of 4).

START

1
Perfect

Information Flag
Set

2
Set Time of Sighting

to Current Time

3
Calculate A/C Position at Time

of Detection
(VECINC)

4
Calculate Conscious Pilots Position at

Time of Detection
(VECINC)

5
Determine Range Between A/C

and Ownship
(DIST)

6
Accept

Observation of A/C
Type

?

7
Save Type Quality

8
Type

Information New
?

9
Set ID Changed Flag

10
Record Type Information

BA

Yes

No

Yes

Yes

No

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-84 Update:  12/31/97

DRAFT

FIGURE 2.15-17.  CC2X2 Functional Flow Diagram (Page 2 of 4).

B

11
A/C

on Same
Side

?

14
Type

Quality Adequate
?

12
Set Relationship

Established Flag = TRUE

13
Get Relationship

(GETREL)

17
Set Relationship =

Unknown

15
Set Relationship

Established Flag = TRUE

16
Set Relationship =

Hostile, not Engaged

18
A/C Newly

Typed and in
Detailed Consideration

Group
?

19
Check for IR Missiles

on A/C

20
Set Significant Info

Flag = TRUE

21
Request a Major Mental

Model Update

22
Update Best Information

Source Variable

C

A

No

Yes

No

Yes

Yes

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-85 BRAWLER

DRAFT

FIGURE 2.15-17.  CC2X2 Functional Flow Diagram (Page 3 of 4).

C

23
Position

Information in
Observation

?

24
Visual

Detection
?

26
Observed

Afterburner
?

28
Can See Stores

?

25
Set Time of First

Detection, if not Set

27
Record Afterburner State

29
ID

Stores
?

31
JSTORE + MAX (1, JSTORE)

30
JSTORE = 2

32
Update Mental Model Regarding
Physical State of Detected A/C

(TKUPMM)

E

Yes

No

No

No

No

Yes

Yes

Yes

Yes

No

D



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-86 Update:  12/31/97

DRAFT

FIGURE 2.15-17.  CC2X2 Functional Flow Diagram (Page 4 of 4).

Subroutine ASTYP

Subroutine astyp assesses the type of the observed aircraft based on knowledge of the type
of other members of its flight. Figure 2.15-18 is the functional flow diagram that describes
the logic used to implement astyp.  The blocks are numbered for ease of reference in the
following discussion.

Block 1. Initialize the array that indicates which flights contain typed aircraft.

Blocks 2-4 are in a loop over the aircraft in the conscious pilot’s mental model for the
purpose of determining which flights contain typed aircraft.

Block 2. Test if the type is known for this aircraft. If true, go to Block 3.  If not, go to
Block 4.

Block 3. Set the flag to indicate that this aircraft’s flight has a typed aircraft in it. This
information will be used later to infer a relationship between untyped aircraft and typed
aircraft in the same flight.

Block 4. Test if there are more aircraft in the conscious pilot’s mental model that still
need to be processed. If true, increment the loop counter and proceed to the top of the loop
to process the next aircraft (Block 2).

Blocks 5-19 are in a loop over the aircraft in the conscious pilot’s mental model for the
purpose of finding an aircraft whose type is unknown and is in a flight that contains typed
aircraft. An inference will be tested between this aircraft and the typed aircraft in its flight.

E

33
Estimate

Detected A/C
Acceleration > 1 G

?

35
Reset Observation

Times

34
Set Significant Info

Flag = TRUE

RETURN

D

No

Yes



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-87 BRAWLER

DRAFT

Block 5. The flight is determined for the aircraft under consideration.

Block 6. Test if the aircraft is in a flight with no typed aircraft or if the relationship
conscious pilot already knows the type of the aircraft under consideration. If true, no
inference can be made or the type is already known, so increment the loop counter and go
back to the top of the loop to process the next aircraft. If false, then an inference may be
drawn, so continue to Block 7.

Blocks 7-18 are in a loop over the aircraft in unknown aircraft’s flight. If possible, an
inference will be made between this aircraft and the typed aircraft in its flight.

Block 7. Check the relationship of the aircraft selected in the outer loop (unknown to
conscious pilot and in flight with known aircraft) to the aircraft  with the current (inner)
loop index. If the inner loop aircraft is not in the conscious pilot’s mental model or is
unknown to the conscious pilot, then loop to the next aircraft. Otherwise, go on to Block 8.

Block 8. At this point we have found an unknown aircraft (outer loop) and an aircraft in
the same flight that is known (inner loop). Real function dist is called twice to calculate the
range difference and velocity difference between these two aircraft.

Block 9. A formation factor is calculated using the range difference and the velocity
difference between the two aircraft.

Block 10. Test if the formation factor (calculated in Block 9) is less than or equal to the
predefined formation limit. If true, the velocity and position differences between the two
aircraft are small enough to consider them to be flying in formation. The type for the
unknown aircraft may now be inferred to be the same as the known aircraft (Blocks 11-16).
If not, jump to Block 18.

Block 11. Set the type and type quality of the unknown aircraft to be the same as for the
known aircraft.

Block 12. Set the flag to request a major mental model update (due to newly typed aircraft)
for the conscious pilot.

Block 13. Test if the newly typed aircraft is on the same side as the conscious pilot. If true,
go to Block 14.  If not, go to Block 15. 

Block 14. Subroutine getrel is called to get the relationship between the conscious pilot
and the newly typed aircraft.  Continue at Block 19.

Block 15. Test if the type quality for the newly typed aircraft is greater than or equal to the
required identification mode. If true, go to Block 16.  If not, go to Block 17.

Block 16. Set the relationship between the conscious pilot and the newly typed aircraft to
hostile, not engaged with self.  Continue at Block 19.

Block 17. Set the relationship between the conscious pilot and the newly typed aircraft to
unknown.  Continue at Block 19.

Block 18. Bottom of the inner loop.  Test if there are any more aircraft in the flight that
can be checked. If true, increment the loop counter and proceed to the top of the inner loop
to process the next aircraft.  If not, go to Block 19.



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-88 Update:  12/31/97

DRAFT

Block 19. Bottom of the outer loop.  Test if there are any more aircraft in the conscious
pilot’s mental model that need processing. If true, increment the loop counter and proceed
to the top of the outer loop to process the next aircraft.  If not, return.

FIGURE 2.15-18.  ASTYP Functional Flow Diagram (Page 1 of 2).

START

1
Initialize Variables

Loop Through # A/C in Mental Model

2
Type

Known
?

3
Set Flag to Indicate Flight

has a Known A/C

4
More

A/C in Mental
Model

?

Loop Through # A/C in Mental Model

5
Determine A/C's Flight

6
Make Inference

?

Loop Through # of A/C in the Flight

7
Type of Flight Mate

is Known
?

C

B

A

Yes

No

Yes

No

Yes

Yes

No

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-89 BRAWLER

DRAFT

FIGURE 2.15-18.  ASTYP Functional Flow Diagram (Page 2 of 2).

Subroutine CC2X4

Subroutine cc2x4 updates all of the mental model tracks of the conscious pilot to the current
time. Figure 2.15-19 is the functional flow diagram that describes the logic used to
implement cc2x4.  The blocks are numbered for ease of reference in the following
discussion.

C

8
Calculate Range and Velocity

Differences
(DIST)

9
Calculate Formation Factor

10
Formation
Factor

Formation
Limit

?

11
Set Type and Type Quality

to same as Known A/C

12
Set Flag for Major

Mental Model Update

13
A/C on

Same Side
as me

?

14
Get Relationship

(GETREL)

15
Type

Quality 3
ID Mode

?

17
Set Relationship = 

16
Set Relationship

to Hostile not
Engaged with self

18
More

A/C in the
Flight

?

B

19
More

A/C in the
Mental
Model

?

A

RETURN

Yes

Yes

Yes

No

No

Yes

No

No

No

Yes

Unknown



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-90 Update:  12/31/97

DRAFT

Block 1. This block represents the start of a manual do loop, looping over the number of
tracks. The loop counter is incremented each time this block is entered. A manual do loop
is used here because aircraft that have not been observed for a long period of time are
removed from the mental model, which would have the effect of incrementing the aircraft
index currently under consideration if using a conventional do loop. The aircraft index
should not be incremented for discarded aircraft.

Block 2. Test if the loop counter is greater than the number of tracks in the mental model.
If true, the loop is finished and the subroutine is exited (Block 3).

Block 3. This is the normal exit point for this subroutine. Control is returned to the
calling routine.

Blocks 4-7 are in a loop over the number of aircraft detected.

Block 4. Test if the detection being examined was for the aircraft under consideration. If
true, check to see if this detection contained positional information (Blocks 5-6).
Otherwise, proceed to the next detected aircraft (Block 7).

Block 5. Tese if this detection contained positional information. If true, go to Block 6.  If
not, go to Block 7.

Block 6. Set the ‘aircraft was seen’ flag to true. This will be used later (Blocks 8 and 23)
to determine how the track should be propagated.

Block 7. Test for more observations to be examined.  If true, increment the counter go
back to the top of the inner loop (Block 4).

Block 8. Test if the ‘aircraft was seen’ flag is true.   If true, jump to Block 21.  If not, go
to Block 9.

Block 9. De-type an aircraft that has not been recently observed (logical function detype
is called to make this determination, basically non flight members that are relatively close
to unknowns or aircraft on the opposite side and have not been observed within the last 20
seconds are de-typed).  If the aircraft is to be de-typed, go to Block 10.  If not, go to
Block 12.

Block 10. Set the flag to request a major mental model update.

Block 11. Unset the variables that contain typing information.  Variables that record
aircraft ID and type are set to zero, the type quality variable is set to its lowest level, and
the flag that indicates a change in aircraft ID status is set to true.

Block 12. Test if it has been a long time since the aircraft under consideration has been
observed or assessed to be the owner of a missile. If true, go to Block 13.  If false, go to
Block 14.

Block 13. Subroutine mremac is called to remove an aircraft from the conscious pilot’s
mental model.  From here, go back to the top of the outer loop to process the next mental
model track (Block 2).



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-91 BRAWLER

DRAFT

Block 14. Test if the aircraft under consideration can be assessed as dead. If true, go to
Block 15.  If not, go to Block 17.

Block 15. Subroutine addmsg is called to add a message regarding the death of the aircraft
under consideration to the list of outgoing messages.

Block 16. Subroutine mremac is called to remove an aircraft from the conscious pilot’s
mental model.  Jump back to Block 2.

Block 17. Subroutine vsub is called to calculate the difference in position between the
conscious pilot’s aircraft and the aircraft under consideration.

Block 18. Test if the difference in position between the conscious pilot’s aircraft and the
aircraft under consideration is too large for a pseudo track. If true, set the ‘too_far’ flag to
true and continue at Block 23.  Otherwise, determine if the uncertainty in position is too
great for a pseudo track (Blocks 17-20). 

Block 19. Subroutine mudpack is called to fill the cross correlation matrix ldxcorr, that
will be used in determining if the position uncertainty is large for the aircraft under
consideration.

Block 20. Subroutine trk_vars_x is called to form variances from positional cross
correlation.

Block 21. Test if the positional variance is too large to use a pseudo observation. If the
variance is too large, go to Block 22.  Otherwise, go to Block 23.

Block 22. Set the ‘not_good’ flag equal to true, indicating that the positional uncertainties
of the aircraft under consideration are too large to attempt to update the track using the
pseudo observation method.

Block 23. Test if the mental model state vector time is equal to the current time. If true, go
to Block 24.  If not, go to Block 25.

Block 24. The track is already up to date. Set the track update method to ‘no time’, update
some bookkeeping variables, increment the main loop counter and then proceed to the top
of the loop to process the next aircraft (Block 2).

Block 25. Decision whether to use a Kalman filter to propagate the track. If one of the
following four conditions is met, use a Kalman filter to propagate the track:

1. Aircraft under consideration ‘was seen’ (detection with positional information)

2. The pmimpt mode flag was set to true (indicating use a Kalman filter, false
means use pseudo observation technique) 

3. The aircraft is too far away for a pseudo track

4. The range uncertainty between the ownship and the aircraft under consideration
is too great for a pseudo track



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-92 Update:  12/31/97

DRAFT

Blocks 26-28 are executed if a Kalman filter is chosen as the method for track propagation.

Block 26. Reduce the perceived accelerations of the aircraft under consideration.

Block 27. Reduce the perceived vertical velocity of the aircraft under consideration.

Block 28. Subroutine kalmni is called to propagate the track using a Kalman filter.
Continue at Block 35.

Block 29. Test if the aircraft under consideration is outside the detailed consideration
group. If true, this is a low priority target.  Go to Block 30.  If not, continue at Block 31.

Block 30. Subroutine vecinc is called to propagate the track using a constant velocity
projection.  Go to Block 35.

Block 31. Test if the perfect information flag is set. If true, go to Block 32.  Otherwise, go
to Block 34.

Block 32. Subroutine m3perf is called to use ground truth information to update the pilot’s
perception of the target.

Block 33. Remove the aircraft under consideration from conscious pilot’s mental model if
its altitude is less than or equal to zero (subroutine mremac), indicating that it has hit the
ground.

Block 34. Subroutine msvpob is called to make a track update using the pseudo
observation technique.

Block 35. Update the mental model state vector time to be the current time.

Block 36. Update current speed and time lagged velocity for this track.  Go back to
Block 2.



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-93 BRAWLER

DRAFT

FIGURE 2.15-19.  CC2X4 Functional Flow Diagram (Page 1 of 3).

START

1
Mental Model

Increment Counter by 1

2
Counter

> Number
of Tracks in

MM

Loop Over Number of Observations

4
Observed A/C

= Mental Model A/C
?

5
Observation

have Positional
Info

?

6
Set WAS_SEEN

Flag = TRUE

7
More

Observations
?

8
Was

A/C Seen

E

D

B

A

Yes

No

Yes

Yes

No

Yes

No

Yes

No

3
Return

No

9
Detype

A/C
?

Yes

10
Request Major

Update

11
Unset Type and Type

Quality, Flag ID Change

No



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-94 Update:  12/31/97

DRAFT

FIGURE 2.15-19.  CC2X4 Functional Flow Diagram (Page 2 of 3).

E

12
Long

Time Since
Observation

?

13
Remove Aircraft from

Mental Model
(MREMAC)

B

14
Assess
A/C as
Dead

?

15
Inform Others

(ADDMSG)

16
Remove Aircraft from

Mental Model
(MREMAC)

B

17
Calculate Position Difference
Between Ownship and Track

(VSUB)

18
Range

too Large
?

19
Pack Cross Correlation

Matrix
(MUDPACK)

20
Calculate Variances

(TRK_VARS_X)

21
Uncertainty
too Large

?

22
Set NOT_GOOD

Flag = TRUE

24
Set Method = 'No Time'

23
MM Track

Time = Time
?

F G

Yes

D

No

Yes

No

No

No

Yes

Yes

Yes

No



DRAFT
ASP-II for BRAWLER 6.1  •  Situation Update

Update:  12/31/97 2.15-95 BRAWLER

DRAFT

FIGURE 2.15-19.  CC2X4 Functional Flow Diagram (Page 3 of 3).

2.15.4 Assumptions and Limitations

If a detection is made of a platform that has a mach number of zero, the platform is
presumed to be a SAM.

SAM sites are restricted from making visual observations, only the SAM sensors can
provide observations to the SAM.

Aircraft are allowed a visual observation of an obstructed visual sector (down and behind)
for the first pass only (to allow observation of flight mates).

Inferred detection of SAM sites is prohibited.

F

25
Conditions

Set for Using
Kalmer
Filter

?

29
A/C Not in
Detailed

Consideration
Group

?

31
Perfect

Information
Flag Set

?

26
Reduce Perceived Acceleration

27
Reduce Perceived Vertical Velocity

28
Propagate Track with

Kalman Filter
(KALMNI)

30
Perform Constant
Velocity Projection

(VECINC)

32
Use Ground Truth

(M3PERF)

33
Remove if on

Ground
(MREMAC)

34
Make Projection Using

Pseudo Observation Technique
(MSVPOB)

35
Update Mental Model Time

36
Update Variables Prior to
Returning to top of Loop

A

G

No

No

Yes

No

Yes

Yes



DRAFT
6.1  •  Situation Update ASP-II for BRAWLER

BRAWLER 2.15-96 Update:  12/31/97

DRAFT

When the sensor routine projects an aircraft’s trajectory from the last state vector time to
the current time or to the time of observation, the projection is made assuming a constant
longitudinal and transverse acceleration.

Pilots have perfect knowledge of their own aircraft’s state and performance capabilities.

Update of knowledge of self takes no time.

Correlation of observations with information already existing in the pilot’s mind is
assumed to be perfect.

No incorrect typing of aircraft.

No false aircraft or missile tracks.

2.15.5 Known Problems or Anomalies

The units are incorrect in the Mach test in Block 11 of subroutine perfrm.  This has already
been corrected for Version V6.3.

The test for significant change in Block 33 of cc2x2 may cause the flag to be unset if it was
previously set but the target aircraft is observed to be pulling less than 1 G.  This is unlikely,
and the effect would be that the next major mental model update would occur on schedule
instead of being done early.


